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Summary

A detailed analysis of the accuracy of several techniques

recently developed for integrating stiff ordinary differential
equations is presented. The techniques include two general-

purpose codes, EPISODE and LSODE, which were developed
for an arbitrary system of ordinary differential equations, and

three specialized codes, CHEMEQ, CREK1D, and GCKP84,
which were developed specifically to solve chemical kinetic

rate equations. The accuracy study is made by applying these
codes to two practical combustion kinetics problems. Each

problem describes adiabatic, homogeneous, gas-phase chemical
reactions at constant pressure and includes all three combustion

regimes: induction, heat release, and equilibration. To
illustrate the error variation in the different combustion

regimes, the species are divided into three types: reactants,

intermediates, and products. Error versus time plots are
presented for each species type and the temperature. These

plots show that CHEMEQ is the most accurate code during
induction and early heat release. During late heat release and
equilibration, however, the other codes are more accurate. A

single global quantity, a mean integrated root-mean-square
error, that measures the average error incurred in solving the

complete problem is used to compare the accuracy of the
codes. Among the codes examined, LSODE is the most

accurate for solving chemical kinetics problems. It is also the
most efficient code, in the sense that it requires the least

computational work to attain a specified accuracy. An
important finding is that use of the algebraic enthalpy

conservation equation to compute the temperature can be
more accurate and efficient than integrating the temperature
differential equation.

Introduction

Many practical problems arising in chemically reacting flows
require the simultaneous solution of large sets of coupled
ordinary differential equations (ODE's) which describe the

time rate of change of chemical species concentrations and

temperature. Examples of such problems include the develop-
ment and validation of reaction mechanisms, combustion of

fuel-air mixtures, and pollutant formation and destruction.

The main difficulty in using classical methods, such as the

popular explicit Runge-Kutta method (e.g., ref. 1), to solve
large sets of chemical kinetic rate equations is that of

"stiffness." The property of stiffness arises in chemical

kinetics because of the widely varying time constants for
different species. For free radicals the relaxation time is on
the order of microseconds, whereas the nitric oxide formation

time is on the order of milliseconds. To satisfy the stability
requirements that errors in the numerical solution remain

bounded as the calculation proceeds in time, classical methods

must use extremely small step sizes, as illustrated in

references 2 and 3 for the explicit Runge-Kutta method in
solving combustion kinetics problems. Consequently, these

methods require prohibitive amounts of computer time to solve
a practical chemical kinetics problem.

Numerous approaches have been proposed for stiff ODE's

to remove the stability restriction on the step size. In Part I
of this effort (ref. 2) and other recent publications (refs. 3 to 5),

several techniques were examined, and detailed comparisons
of their computational work requirements for solving com-
bustion kinetic rate equations were made. The methods

examined in these studies include the general-purpose packages

EPISODE and LSODE (refs. 6 to 9), which were developed
for an arbitrary system of ODE's, and the specialized codes
CHEMEQ (ref. 10), CREK1D (refs. 11 to 14), and GCKP84

(ref. 15), which have all been developed specifically to

integrate chemical kinetic rate equations. In the present work
the accuracy of these techniques in solving combustion kinetic

rate equations is examined.

In general, numerical methods generate approximate
solutions to the governing ODE's at discrete points in time.

To maintain accuracy of the numerical solution, they require
that the estimated error incurred on each time step be less than

a user-specified local error tolerance. This result is usually
achieved by restricting the size of the time step. Some solvers,

in addition, adjust the order of the numerical approximation
when appropriate. In either case, only the estimated local error,

that is, the estimate of the error incurred in advancing the
numerical solution by one time step, is controlled. However,

the quantity that is of interest to the user is the global error,
which is the deviation of the numerical approximation from

the exact solution and which generally accumulates in a
nontrivial manner from the local errors.

In the present paper, a detailed study of the estimated global

error incurred by the above techniques in solving combustion
kinetic rate equations is presented. Also presented is a study

of the variation of the global error with the user-specified local
tolerance and an examination of the computational cost,
measured by the required CPU execution time, associated with



attaining desired accuracy. The paper concludes with two

appendixes: Appendix A describes the methods examined in

this study, and appendix B describes the procedure used to

solve the algebraic enthalpy conservation equation for the

temperature.
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Symbols

pre-exponential constants in forward and reverse

rate coefficients for reactionj (eqs. (6) and (7)),

units depend on reaction type

ATOLi local absolute error tolerance for ith component,

required by LSODE (eq. (20)).

ATOLSP local absolute error tolerance used with LSODE

for all species mole numbers

Bj exponent-on-ten in pre-exponential constant for

forward rate coefficient of reaction j, where Bj =

logl0Aj, arbitrary units

Cc local error test constant used in GCKP84 (eq. (21))

cp.i constant-pressure molar specific heat of species

i, J/kmole K

di.,, estimated local truncation error in ith component

at t,,

Ei.,, cumulative difference between converged and pre-

dicted values of (dYi/dt) at t,,, used by GCKP84,

units depend on component i

Ej,E_j activation energy in forward and reverse rate

coefficients for reactionj (eqs. (6) and (7)), cal/mole

,2_ mean integrated root-mean-square global error

(eq. (34))

EPS for EPISODE and GCKP84: local relative error

tolerance for species with initially nonzero mole

numbers and temperature, and local absolute

error tolerance for species with initially zero mole

numbers; for LSODE: local relative error tolerance

for all components; for CHEMEQ and CREK ID:

local relative convergence criterion for all

components.

ERMAX relative error tolerance for Newton-Raphson iteration

for temperature

EWT i local error weight for ith component, used by

LSODE (eqs. (19) and (20))

ei estimated global error in i th component (eq. (24))

ei, j estimated global error for ith species of type j

erm _ root-mean-square norm of the estimated global

errors for all variables (eq. (27))

erms, j root-mean-square norm of the estimated global

errors for species of type j (eq. (26))

er estimated global error in temperature (eq. (25))
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generalized algorithm for 11,,,(eq. (14))

time rate of change of i th component, units depend

on i

initial mixture mass-specific cnthalpy, J/kg

molar-specific enthalpy of species i, J/kmole

step size used on the n th step, s

initial step length to be attempted by integrator, s

error control indicator for EPISODE

error control indicator for LSODE

forward and reverse rate coefficients tot reaction

j (eqs. (6) and (7)), units depend on reaction type

total number of first order ordinary differential

equations

temperature exponent in forward and reverse rate

coefficients for reaction j (cqs. (6) and (7))

total number of elementary chemical reactions in

reaction mechanism

total number of chemical species in reacting gas

mixture

test problems 1 and 2, respectively

pressure, N/m 2

universal gas constant in cal/mole K

universal gas constant in J/kmole K

molar forward and reverse rates per unit volume

for reaction j (eqs. (4) and (5)), kmole/m 3 s

local relative error tolerance for LSODE

temperature, K

maximum temperature change allowed before

reaction rate coefficients and thermodynamic

properties are updated in CREK1D, K

standard solution value for temperature, K

minimum species mole number values allowed in

CHEMEQ and CREK1D

reaction time, s

final time (> 1 ms) at which numerical solution

is generated, s

time reached on the n th integration step, s

initial time, s

reacting gas velocity, m/s

chemical symbol for ith species

mole fraction of species i

standard solution value for mole fraction of species i

mole fraction value corresponding to omin (eq. (33))

numerical solution of the ith component at t,,, units

depend on i

value obtained for _,,, on m th iteration, units

depend on i
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yil °l
,tl

Yiln

Ymax,i

Yi

%

vii', vii ,,

P

oi

Omin

value obtained for Y/.,, on mth iteration, units

depend on i

predicted value of Yi.,,, units depend on i

numerical solution of the ith component at t,,

generated by using exact past values, units depend

on i

local weight for ith component, used by EPISODE

and GCKP84 (eqs. (17), (18), and (21))

exact solution lbr the ith component, units depend

on i

constant in generalized algorithm for 11,,(eq. (14))

global error at t,, (eq. (15))

stoichiometric coefficients of species i in forward

and reverse reaction j (eq. (1)); number of

kilomoles of species i in elementary reactionj as

a reactant and as a product, respectively

mixture mass density, kg/m 3

mole number of species i, kmole species i/kg mixture

mole number value at which local error control in

LSODE is equally relative and absolute (eq. (32))

Governing Differential and

Algebraic Equations

The ordinary differential equations describing homogeneous

gas-phase chemical reactions of the type

Ns Ns

E E 4x,
/=l /=1

j = 1..... M R (1)

are as follows:

do i

-- = f(ak, T )
dt

i,k = 1..... % (2)

oi (to) = given

T(t0) = given

where f, the total formation rate of species i, is given by

NR

z,.= - p ' o4 - <)(Rj- R_j)
j=l

(3)

The molar reaction rates per unit volume, Rj and R j, are

given by the law of mass action (e.g., ref. 16):

NS

ej = k/IX (oo,)"_'
l=1

(4)

and

N S

R_j = k j H (Pal) vii

1=l

(5)

where the forward (kj) and reverse (k_j) rate coefficients are

given by the modified Arrhenius expressions:

ki = AJT_/ exp -E/RT) (6)

k j = A_jT N _ exp (-E_j/RT) (7)

In equations (1) to (7), vii and vii are the stoichiometric

coefficients of species i (with chemical symbol Xi) in reaction

j as a reactant and as a product, respectively; Ns is the total

number of distinct chemical species (reacting and inert) in the

gas mixture; NR is the total number of independent reactions

in the mechanism; ai is the mole number of species i (in

kilomoles of species i per kilogram of mixture); t is the time

(in seconds); p is the gas mixture mass density (in kilograms

per cubic meter); T is the temperature (in kelvins); R is the

universal gas constant (in calories per mole per kelvin); and

AJ, A_j, Nj, N j, Ej, and E_j are constants in the modified

Arrhenius expressions for kj and k_j. The reverse rate

coefficient parameters are calculated from the forward rate

coefficient parameters and the concentration equilibrium

constants by using the principle of detailed balancing (ref. 16).

In this paper, as in the companion paper (ref. 2), attention

is restricted to adiabatic, constant-pressure chemical reactions.

For such problems, the following enthalpy conservation

equation constitutes an algebraic constraint on equations (2)

to (7):

ms

E gig'i = H0'

i=1

(8)

where f_i is the molar-specific enthalpy of species i (in joules

per kilomole) and H0 is the initial mixture mass-specific

enthalpy (in joules per kilogram). Equation (8) can be

differentiated with respect to time to give the following ODE

for the temperature

dT

dt

Us

_a fi&
i=1

N_

E OiCp'i

i=l

(9)



where Cp.i is the constant-pressure molar-specific heat of
species i (in joules per kilomole per kelvin). Either equation
(8) or (9) can be included in the equation set. We explore the
use of both these equations and examine their effects on

solution accuracy and computational cost.
The mass density of the mixture is given by the ideal gas

equation of state

p =p/(RaTom) (10)

where p is the absolute pressure (in newtons per square meter),

R a is the universal gas constant (in joules per kilomole per
kelvin), and o,, the reciprocal of the mean molar mass of the

mixture, is given by

= E ai (11)Om

i=1

For constant pressure problems the following density ODE
can be obtained from equation (10) by differentiating it with

respect to time and then rearranging terms in the resulting

expression:

do
dt-- - °\:r7, + -am dt /

i=1

(12)

Either equation (10) or (12) can be used to compute the density.
The code GCKP84, which allows the pressure to vary, solves

for p by integrating its ODE (eq. (12)). With the other codes,
however, we obtain P by using equation (10). Indeed, P is

implicitly replaced by the right-hand side of equation (10) and
does not appear as a variable. We, therefore, exclude density

from our discussion, including statement of the problem, and
restrict attention to solving for the other Ns + 1 quantities.

Problem Statement

The initial value problem may be stated as follows: Given
(1) at time t = to, values for the species mole numbers, ai

(i = 1 ..... Ns), and the temperature, T, (2) the pressure, p,
and (3) the reaction mechanism, find, at the end of a prescribed

time interval, the mixture composition and temperature.

Methods and Codes Examined

The codes examined in this study include the general-purpose

packages EPISODE and LSODE (refs. 6 to 9) and the

specialized techniques CHEMEQ (ref. 10), CREK1D (refs.
11 to 14), and GCKP84 (ref. 15). The methods used in these
codes are summarized below and are discussed in detail in

appendix A.

The packages EPISODE and LSODE consist of a variable-
order, variable-step implicit Adams method (suitable for

nonstiff problems) and a variable-order, variable-step backward
differentiation formula method (suitable _br stiff problems;

e.g., refs. 1 and 17). Both methods use a standard predictor
and a variety of corrector formulas--from functional iteration
to a modified Newton iteration is included. The Jacobian

matrix OJ)'ay, where _y is the vector of dependent variables
and f= dy/dt, is computed either numerically or with a user-

supplied subroutine. In part I of this investigation (ref. 2) all

options relevant to the problem of chemical kinetics were
attempted, and the stiff method with Newton iteration and user-

supplied analytical Jacobian matrix was found to be the fastest.
Therefore, only this option is used in examining the accuracy
of EPISODE and LSODE.

The general chemical kinetics program GCKP84 uses the

integration technique developed by Zeleznik and McBride
(ref. 18). The algorithm is essentially a revised version of the

GEAR package (ref. 19), which contains the same two integration
methods as EPISODE and LSODE and several iteration

techniques. For reasons given above we restrict attention to
the stiff method with Newton iteration using an analytical
Jacobian matrix. GCKP84 includes corrective actions if the

physically impossible situation of negative concentrations,
temperature, density, or velocity arises.

In CHEMEQ, at the start of each time step the ODE's are

separated into two classes: stiff and normal. For equations
classified as normal, a classical second-order predictor-corrector

method, the trapezoidal rule, is used. For the stiff equations

a simple stable asymptotic integration formula is used.
The code CREK1D is based on the exponentially fitted

trapezoidal rule developed by Liniger and Willoughby (ref. 20)
and Brandon (refs. 21 and 22). This code includes special

treatment of ill-posed initial conditions and automatic selection
of Jacobi-Newton iteration or Newton iteration.

Error Considerations

In this section the error controls used in the different codes

examined are discussed. In general, numerical methods replace

the differential equations with difference equations and solve

them step by step. Starting with the known initial conditions
y (t0) at to numerical approximations Yn to the exact solution

y(t,,) of the ODE's are generated at discrete points in time
(tn (n = 1,2 .... )), until the end of the integration interval is
reached. At each t_ the numerical method provides a rule for

generating the approximate solution _Ynin terms of computed
quantities at one or more previous times.

For the scalar differential equation,

dYdt=f(Y) 1
(13)

y(to) = given



thealgorithmsusedforY, in all of the codes can be written as

Y,, = c_Y,,_l + h, _Y(h,,,Y,,,f,,Y,,_l,f,_l .... ) (14)

where _ is a constant, Yn-j is the approximate solution at t,,_j,
h,, (equal to t,- t,,_l) is the step size used on the step

It,,_ i,t,] and f,_j = f(Y,,_j). Because equation (14) involves
the unknown quantity Y,, its solution generally requires an
iterative procedure. Starting with the predicted value (an initial
guess), denoted by _01, improved estimates _,,,1 (m = 1,2 .... )

are generated until the iteration converges, that is, until the

difference in two successive approximations approaches zero
within a specified accuracy.

During the calculation procedure, errors called discretization
or truncation errors are introduced into the numerical solution

because of the approximation of the ODE's by difference
equations. Two measures can be defined for this error, which

is a property of the numerical method (e.g., ref. 23). The
global discretization error _% at any t,, is the difference

between the computed approximation Y, and the exact
solution y(t,):

e,, = Y,, - y(t,,) (15)

It is the quantity that the user wants to know and control. The

local truncation error d,, at t,, is the error in the numerical

approximation _Y_,that is generated on the step [t,, _,t,,] by
using exact past values:

d,, = _Y_-- y(t,,) (16)

It is the quantity that ODE solvers generally control. The two

discretization errors are illustrated in figure 1 for a single
ODE.

The codes examined in this study require the user to specify
values for one or more local tolerance parameters, which
control the accuracy of the numerical solution. Now, as
discussed below, the same error control is not used in all codes.

Nevertheless, for convenience, for all codes the same notation,

EPS, is used to denote the local tolerance quantity, or the

primary one if several are required. In EPISODE the local
truncation error vector d, satisfies the inequality

1 _ " --2 \1/2

di n

(17)

where N is the number of ODE's, di.,, is the estimated local
truncation error in the ith component at t,, and for the error
control used

Y_.xi = max [IY/.... J l, IY/,,,-2 l/ for i that satisfy Yi (to) _ O,

= max [1, ]Y/,n-ll/ for i that satisfy yi(to) = O,

(18)

y,Y

v_

<
YOn)
Y,,-1

Y(tn_l)

Y2

Y(to),YO

Exact solution

O, • Numerical solution

I I I _-_hnI I I
to t I t 2 tn_ 1 t n t

Figure l.--Numerical solutions and truncations error types for the single ODE

dy/dt =fly). The exact solution to the ODE is denoted by y(t). The

numerical solutions obtained with the initial condition Y0 = y(to) are

denoted by solid circles. The solid square denotes the numerical solution

obtained at t,, by using exact past values. The local truncation error is

denoted by d, the global truncation error by e, and the step length by h.

where the vertical bars denote absolute value. The error control

selected to be performed by LSODE is given by

tl _ -- "2\ 1/2

(di'n'_ <__1

i=1 \EWTi/I /

(19)

where

EWTi = EPS 1_,_ I[ +ATOLi (20)

where ATOLi is the user-supplied local absolute error
tolerance for the i th component.

In GCKP84 the local error test satisfies the inequality

(1 i=l_ (Ei_)2) 1/2 <- CG gpS

(21)

where, Ei, , contains the cumulative difference between the

converged and predicted values of the derivative (dYi/dt) at

t_ and where Cc is a constant. The quantity Ymax,i has the
same meaning as in EPISODE (see eq. 18)).

The codes CHEMEQ and CREK1D do not control the

estimated local truncation error. The solution is accepted when
the magnitude of the normalized difference in successive



estimates (Y,I''_+ll -I7,,I ''q) is less than a specified amount.

Therefore, these codes control only the error in the solution

to the difference equation of the method. In CHEMEQ each

component i satisfies the inequality

y.lm+ II _,nl
,, - .... I < EPS

rain / IY [m+ 111, y lml ? --{ I i,l* i, )

(22)

The convergence criterion used in CREK1D is given by

1 /y.[m+ 1] _ 1/2.... W ]_
I?,T _< EPS (23)

i _ \ 1,71

It is clear from the above discussion that the user-supplied

local tolerance EPS does not have the same meaning for all

codes. In LSODE it is the local relative error tolerance tot

all variables and is a measure of the number of accurate

significant figures in the numerical solution. In EPISODE and

GCKP84, however, as discussed in the section "Computational

Procedure," EPS is the local relative error tolerance for only

variables with nonzero initial values, such as the temperature.

For species with zero initial mole numbers EPS is the local

absolute error tolerance and is a measure of the largest number

that may be neglected. In contrast to these three codes,

CHEMEQ and CREK1D do not control the local truncation

error, and EPS is the local relative convergence criterion, or

error in the solution to the difference equation. However, as

described in appendix A, although CREK1D does not test that

the estimated local truncation error is within a prescribed

bound, the step length calculation procedure attempts to

achieve this result. The step length to be attempted next is

selected such that the current estimate of the local truncation

error normalized by the solution is at most equal to EPS.

Because of these differences in the meanings of EPS it will

be referred to as simply the local tolerance.

Evaluation of Temperature

Of the codes examined in the present study, only GCKP84

and CREK1D were written explicitly for nonisothermal chemical

reactions. These methods, therefore, have built-in procedures

for calculating the temperature. For the other codes, however,

the temperature has to be calculated along with the mixture

composition. In the present study (as in re:['. 2), the temperature

was computed using one of the two methods outlined below.

In method A the temperature was calculated from the initial

mixture mass-specific enthalpy H 0 and the solution for the

species mole numbers returned by the integrator by using the

algebraic enthalpy conservation equation (8). This equation

was solved for the temperature by using a Newton-Raphson

iterative technique, with a user-supplied local relative error

tolerance, ERMAX (as described in appendix B). In this

method, the temperature is not an explicit dependent variable,

so the number of ODE's is equal to the number (Ns) of

species and the Jacobian matrix is of size N s x N s. The

integrator, therefore, tracks only the solution for the species

mole numbers. The temperature was also computed when the

species time derivatives and the Jacobian matrix were evaluated.

In method B the temperature was treated as an additional

dependent variable and evaluated by solving its ODE (eq. (9)).

In this method, the number of ODE's is equal to N s + 1, the

Jacobian matrix is of size (Ns + 1) × (Ns + 1), and the inte-

grator tracks the solutions for both the species mole numbers

and the temperature.

The following naming convention was adopted. Techniques

using method A were given the suffix A (EPISODE-A, etc.),

and those using method B were given the suffix B (EPISODE-

B, etc.).

The code GCKP84 allows for heat transfer between the

reacting gas mixture and its surroundings and must therefore

use an ODE to solve for the temperature. It also includes the

density and velocity, V, of the gas mixture as dependent variables

and evaluates them by integrating their ODE's. (For the static

test problems used in this study the velocity ODE is given

trivially by dV/dt = O, V(to) = 0.) Consequently, the number

of ODE's solved by GCKP84 is equal to N s + 3, and the

Jacobian matrix is of size (N s + 3) x (N s + 3).

CREK1D computes the temperature by solving the algebraic

enthalpy conservation equation (8). However, the calculation

procedure is different from that used in method A. In CREK1D

the mixed differential-algebraic system of equations (2) and

(8) is solved simultaneously, whereas method A solves

equation (8) after the species ODE's have been integrated

over a time step. Thus, although the number of ODE's solved

by CREK1D is equal to Ns, the Jacobian matrix is of size

(Ns+ 1) x (Ns+ 1).

Test Problems

The algorithms examined in the present study were applied

to the same two test problems used in our previous work

(ref. 2). Both problems describe adiabatic, constant pressure,

transient, batch chemical reactions and include all three com-

bustion regimes: induction, heat release, and equilibration.

Test problem 1 describes the ignition and subsequent combus-

tion of a mixture of 33 percent carbon monoxide and 67 percent

hydrogen with 100 percent theoretical air at an initial temperature

of 1000 K and a pressure of 10 arm. It comprises 12 reactions

which describe the temporal evolution of 11 reacting species

(CO, C02, H, H2, HzO , N, NO, N2, 0, OH, and 02). Test

problem 2 describes the ignition and subsequent combustion

of a stoichiometric hydrogen-air mixture at a pressure of 2 atm

and an initial temperature of 1500 K. It involves 30 reactions

among 15 species (Ar, CO2, H, HO2, H2, H20, H202, N,

NO, NO2, N2, N20, O, OH, and O2), of which two (Ar and

CO2) are inert. The reaction mechanisms and forward rate

coefficient parameters for the two test problems are given in

tables I and II.



TABI.E 1.--REACTION MECHANISM AND FORWARD RATE

COEFFICIENT PARAMETERS USED FOR TEST PROBLEM 1

[Rate coefficient ki = 10Ri7% exp(-Ej/RT).]

Reaction

number,

J

Reaction

1 CO +OH- CO 2 + H

2 H+O,-O+OH

3 H2+O-H+OH

4 H2O + O-OH + OH

5 H + H20 - H 2 + OH

6 N+O2-NO+O

7 N 2 + O - N + NO

8 NO+M-N+O+M

9 H+H+M-H2+M

10 O+O+M-O2+M

11 H +OH +M-H20+M

12 H 2 +O_-OH +OH

Rate coefficient parameters

kcal/mole

11.49 0 0.596

14.34 16.492

13.48 9.339

13.92 18.121

14.0 _ 19.870

9.81 1.0 6.250

13.85 0 75.506

20.60 - 1.5 149.025

18.00 -1.0 0

18.14 -1.0 0.340

23.88 -2.6 0

13.00 0 43.000

TABLE II. REACTION MECHANISM AND FORWARD RATE

COEFFICIENT PARAMETERS USED FOR TEST PROBLEM 2

[Rate coefficient k i = 10B, T'Vi exp(-Ej/RT). ]

Reaction Reaction Rate coefficient parameters

number,

j _j N_ e_,
kcal/mole

I H + 02 = OH + O 14.342 0 16.790

2 O + H 2 = OH + H 10.255 1.0 8.900

3 H 2 + OH = H20 + H 13.716 0 6.500

4 OH + OH = O + H20 12.799 / 1.093

5 H+O2+M=HO2+M 15.176 _ - 1.000
6 O + O + M = 02 + M 13.756 -1.788

7 H + H + M = H 2 + M 17.919 1.0 0

8 H + OH + M - H20 + M 21.924 -2.0 0

9 H 2 + HO 2 - H20 + OH 11.857 0 18.700

10 H202 + M = OH + OH + M 17.068 45.500

11 H 2 + 02 = OH + OH 13.000 43.000

12 H + HO 2 = OH + OH 14.398 1.900

13 O + HO 2 = OH + O 2 13.699 1.000

14 OH + HO 2 = H20 + 02 13.699 1.000

15 HO 2 + HO 2 = H202 + 02 12.255 0

16 OH + H202 = H20 + HO 2 13.000 1.800

17 O + H202 = OH + HO 2 13.903 1.000

18 H + H202 = H20 + OH 14.505 9.000

19 HO 2 + NO = NO 2 + OH 13.079 2.380

20 O + NO 2 = NO + 02 13.000 0.596

21 NO + O + M = NO 2 + M 15.750 1.160

22 NO 2 + H = NO + OH 14.462 , 0.795

23 N + 02 - NO + O 9.806 1.0 6.250

24 O + N 2 - NO + N 14.255 0 76.250

25 N + OH = NO + H 13.602 0

26 N20 + M = N 2 + O + M 14.152 51.280

27 O + N20 - N 2 + 02 13.794 24.520

28 O + N20 = NO + NO 13.491 21.800

29 N + NO 2 - NO + NO 12.556 0

30 OH + N 2 - N20 + H 12.505 , 80.280
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Figures 2 and 3 present the variations with time of the

chemical species mole fractions and temperature for test

problems 1 and 2, respectively. These solutions were generated

with LSODE-B using a small value (10 -5) for the local

relative error tolerance. Both test problems were integrated

over a time interval of 1 ms in order to obtain near-

equilibration of all chemical species and the temperature.

Computational Procedure

For each method, global errors in solutions generated with

a certain value for the local tolerance EPS were estimated by

comparing them with results obtained with the same method
and a reduced tolerance. The solutions used as a basis for

comparison were the most accurate generated and are referred

to as standard solutions. For example, for CREK1D solutions

used as standards were generated with CREK1D and
EPS = 10-5 These standard solutions were used to estimate

the global errors in results produced with CREK1D and

EPS = 10 -2, 10 -3 and 10 -4 . The above procedure for

estimating global errors is reliable provided the technique is

effective in the sense that reducing the local tolerance actually

reduces the global error (ref. 24). In any case, in the absence

of exact solutions the only method for assessing the accuracy

of an algorithm is to compare the solutions that it produces

with those obtained with a reduced local tolerance using either

the same algorithm or a different one. The use of solutions

generated by each technique as a standard of comparison only

for itself ensures that the accuracy comparison is not biased

in favor of any one method or code.

A typical computational run was performed by first initializing

the time (t, set equal to zero), species mole numbers, and

temperature. The integrator was then called with values for

the necessary input parameters, including the local tolerance

and the elapsed time (equal to 1 ms for both problems) at which

the integration was to be terminated. After each step successfully

executed by the integrator, the current time and the solutions

for the species mole fractions and temperature were saved.

This procedure was repeated until the time reached by the

integrator was greater than or equal to 1 ms. The saved time



values served as input data for the output stations at which
the standard solution was to be generated. At each of these

discrete time values global errors in the species mole fractions

and temperature were estimated by comparisons with the
standard solutions as follows:

ei(t ) = _xi(t_) - 1 i= 1..... Ns (24)
Xi,sT( t )

T(t)
eT(t ) - - 1 (25)

Tsr(t)

where ei (t) and eT(t) are, respectively, the estimated global
errors in the mole fraction xi(l) of species i and the tem-

perature T(t) at time t and where Xi,sT(t) and TsT(t) are,
respectively, the standard solution values for the mole fraction

of species i and the temperature at time t. To prevent the
possibility of requiring accuracy in species with immeasurably
small concentrations, global errors were not measured for

species whose standard solution mole fractions were less than

0.1 ppm. For such species ei(t ) was set equal to zero. In this
way time histories of the global errors in species mole fractions

and temperature were generated.
For each technique, standard solutions were generated with

a small value for EPS. In addition to EPS and the elapsed time

at which the integration was to be terminated, other input

parameters were required by all codes examined. In this paper
only those input parameters that affect the accuracy of each
code are discussed. A more detailed discussion of these

parameters can be found in part I (ref. 2).
The user-supplied parameters relevant to solution accuracy

that are required by LSODE are the error control flag, ITOL,
which indicates the type of local error control to be performed,
and the local relative, RTOL, and absolute, ATOL, error
tolerances. Both RTOL and ATOL can be specified either as

(1) a scalar, so that the same local error tolerance is used for
all variables, or (2) an array, so that different values of the
local error tolerance are used for different variables. In the

present work the error control given by ITOL = 2 (for scalar
RTOL (equal to EPS) and array ATOL, see appendix A) was
used for reasons given below. Since the same number of

accurate significant figures is acceptable for all solution

components, RTOL was specified as a scalar. Now, for the

test problems examined in this study, the species mole fractions
and temperature vary widely (figs. 2 and 3), so relative error
control is appropriate and is the reason for designating the local
relative error tolerance as the primary tolerance (eq. (20)).
Pure relative error control can be achieved by specifying a

value of zero for the local absolute error tolerances. However,

since many of the species had zero initial concentrations, pure
relative error control could not be used. To make the error

control mostly relative, small values were specified for the
absolute error tolerances for the species mole numbers; for

convenience the same value (equal to ATOLSP) was used for

all species. Since the temperature can never be zero, pure
relative error control was used for this variable, that is, the

local absolute error tolerance for temperature was set equal

to zero. Thus, ATOL was specified as an array.
The values used for ATOLSP were those obtained in part

1 of this study (ref. 2) for LSODE-B as follows: With
EPS = 10 5, ATOLSP was progressively decreased until the

temperature-time trace showed essentially no change with a
further decrease. The values obtained for ATOLSP by using

this procedure were 10 -14 and 10 -ll, respectively, for test

problems 1 and 2. For consistency, the same EPS and ATOLSP
were used with LSODE-A. They were, however, checked to
ensure that reductions in ATOLSP resulted in essentially the

same solutions. For reasons given in the next section ERMAX

was set equal to EPS.
To make accuracy comparisons among the codes meaningful,

the same value of EPS (i.e., 10 -5) was used to generate

standard solutions for GCKP84, CHEMEQ-A, CHEMEQ-

B, and CREK1D. With EPISODE, however, an EPS value

of 10-6 was used because larger values produced physically

meaningless results for test problem l--little or no change from
initial values after an elapsed time of 1 ms. The error control

to be performed by this code is selected by means of the flag

IERROR (appendix A). For the reasons given above, pure
relative error control (option IERROR = 2) could not be used

and the option IERROR -- 3 was used, instead. This error
control is semirelative (see eqs. (17) and (18)). It is relative
for a variable that is initially nonzero. But for a variable that

is initially zero, it is absolute until the variable reaches unity
in magnitude, when it becomes relative. Since none of the mole
numbers attains a value of unity, the error control is always

absolute for species with zero initial mole numbers.
The solution generated with EPISODE depended on the

value specified for the initial step length (h0) to be attempted

by the integrator. In generating standard solutions with this
code, h0 was progressively decreased (with EPS = 10 -6)

until the temperature-time trace showed essentially no change
with a further decrease. The values obtained for h0 by using

this procedure were 10 -9 and 10-8 s, respectively, for test

problems 1 and 2, for both EPISODE-A and EPISODE-B.
However, an h0 value of 10 -9 S was used for test problem
2 because it resulted in smaller execution times, as shown in

table III. For EPISODE-A the savings were modest, but for

EPISODE-B they were significant.
GCKP84 uses the same error control as that selected to be

performed by EPISODE. It also requires the user to specify
ho. Since details of the integration technique used in GCKP84
were not known, a default value of h0 = 10-6 s was used in

our previous work (refs. 2 to 5). However, Bittker and Scullin
(ref. 15) have since then set the default value for h0 at
5 × 10-s s. Nevertheless an ho value of 10-6 s was used in

this study to be consistent with part I (ref. 2). In addition, as
shown in the next section, the 10-6 value generally produced
more accurate results than the new default value, while requiring

comparable execution times for all EPS used in this study.



TABLE III.--EFFECTS OF INITIAL STEP

LENGTH ON EXECUTION TIMES REQUIRED
BY EPISODE-A AND -B (EPS = 10 6)

FOR TEST PROBLEM 2

Method

EPISODE-A

EPISODE-B

Initial step CPU

length, execution
h0, time,

s s

10 8 3.1

I0 9 3.0

10 8 14

10-9 7.8

In contrast to EPISODE and GCKP84, the other codes

automatically compute the h0 value to be attempted by the

integrator. In LSODE the calculation procedure for h0 employs

the user-specified values for the first output station and the

local error tolerances. The computed initial step length can

have an adverse effect on both the computational work and

the solution generated by the code (ref. 3). The calculation

procedures used for h0 in CHEMEQ and CREK1D are based

on the problem physics (see appendix A) and the computed

h 0 did not cause the above difficulties.

Both CHEMEQ and CREK1D use a relative convergence

criterion (eqs. (22) and (23)). The difficulty of applying the

test when the solution vanishes is avoided by setting mole

numbers less than a suitably small value, TINY, to be equal

to TINY. In this study a value for TINY of 10 2o was used.

The only user-specified parameter required by CREK1D that

affects its accuracy is AT, which is the maximum temperature

change allowed before the reaction rate coefficients and the

thermodynamic properties _i and Cp.i are updated. Use of this

parameter increases the efficiency of numerical techniques in

solving combustion kinetic rate equations (refs. 2 and 3). To

ensure that the most accurate solutions were used as standards,

a value of AT = 0 K was used for both test problems.

Results and Discussion

The procedure described in the previous section was used

to study the global errors incurred by the different techniques

in solving the two test problems. All results presented herein

were generated on the NASA Lewis Research Center's IBM

370/3033 computer using single-precision accuracy, except

GCKP84 which uses double-precision accuracy.

Both temperature calculation methods A and B were

attempted with EPISODE, LSODE, and CHEMEQ. The error

control used in method A is pure relative, and the local relative

error tolerance is equal to ERMAX (see appendix B). In

EPISODE-B and CHEMEQ-B the error or convergence

control for the temperature is pure relative and the local relative

tolerance is equal to EPS (eqs. (17), (18), and (22)). For

reasons given previously in the section "Computational

Procedure" the above remarks apply to LSODE B also. To

make accuracy comparisons between the two temperature

calculation methods meaningful, ERMAX was set equal to

EPS, thereby imposing the same local accuracy requirements

on both methods. Thus, both methods A and B used the same

error control (i.e., pure relative) and the same local tolerance.

To facilitate accuracy comparisons among the different

techniques, the species were divided into three types: reactants

(R), intermediates (I), and products (P). At each discrete time

at which global errors had been computed, root-mean-square

(rms) errors, erms,i(t) (j = R,I,P), were computed for all

three species types as follows:

em_,j(t) = eli(t) j = R, I, P

i=1

(26)

where ei,j(t) (i = 1 ..... Nj) is the estimated global error at

time t in the mole fraction of the ith species of type j and

where _ is the number of species of type j. The values of

N/(and the species that comprise each subset) are as follows:

For test problem 1, NR = 4 (CO, H2, N2, and O2), N1 = 4

(H, N, O, and OH), and Ne = 3 (CO2, H?O and NO). For

test problem 2, NR = 5 (Ar, CO?, H2, N2, and O2), Nl = 6

(H, HO2, H202, N, O, and OH), and Np = 4 (H20 , NO,

NO2, and N20 ). Although Ar and CO2 are inert species, so

that their mole numbers do not change during the course of

the reaction, they are classified as reactant species because

they participate in three-body reactions as catalysts and their

concentrations affect the rates of these reactions.

In addition to the rms error for each species type, a single

rms error for all variables, erm_(t), was computed at each time

t by using

I NS / I/2

e_(t) + all')

e ..... (t) : i=1 (27)

NS+ I

Figures 4 to 9 present the variations with time of the percent

rms error in reactants, intermediates, and products and the

percent error in temperature for test problem 1. Similar infor-

mation is presented for test problem 2 in figures 10 to 17. For

brevity, test problems 1 and 2 are hereinafter referred to as

P1 and P2, respectively. Note that for clarity the actual errors

have been magnified in some of the figures. The maximum

percent rms errors incurred and the reaction times at which

they occurred are given in tables IV and VI, along with the

values used for the input parameters discussed in the previous

section. For each code (except GCKP84) and EPS, these input

parameters, obtained in part I of this study (ref. 2) by a trial-

and-error procedure, minimized the execution time required

to solve the problem. To prevent the possibility of generating

physically meaningless results by using too large a value of

10 Continued on p. 29
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Figure 14.--Variation with time of percent rms error in (a) reactants, (b) intermediates, and (¢) products, and of (d) percent error in temperature. Test problem
2 results generated using GCKP84.
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Figure 15. Variation with time of percent rms error in (a) reactants, (b) intermediates, and (c) products, and of (d) percent error in temperature. Test problem
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Figure 16.--Variation with time of percent rms error in (a) reactants, (b) intermediates, and (c) products, and of (d) percent error in temperature. Test problem
2 results generated using CHEMEQ-B.
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Method

EPISODE-A

EPISODE-B

LSODE-A

LSODE B

GCKP84

CHEMEQ-A

CHEMEQ-B

CREK1D

Local

tolerance,

EPS

5×10 6

5×10-6

1×10 -2

lxl0 3

1 x 10 -4

lxl0 2

lxl0 3

lxl0 4

_1 × 10 2

5×10 3

1 x 10 -3

lxl0 -4

IX10-2

1XI0 3

1X10-4

1×10 2

IXI0-3

1 X 10 -4

IXI0 2

Ixl0 3

IXl0 4

Local

absolute

error

tolerance

for

species
mole

numbers,

ATOLSP

(a)

(a)

lxl0 12

lxl0 ii

lxl0 11

lxl0 12

1×10-11

1×10 tl

(a)

aNol needed•

bsee text,

CTerminated at t _ 3.7 x 10 -5 s because of instability

Initial

step

length,

h0,

s

10-7

10 7

(a)

y

10-6

(a)

TABLE IV.--ROOT-MEAN-SQUARE ERRORS FOR TEST PROBLEM 1

[Numbers in parentheses designate powers of 10.]

Maximum temperature

change between

updates of rate

coefficients and

thermodynamic

properties,

AT,

K

(a)

r

2.0

2.0

1.5

Reactants

Maximum Reaction

rms error, time,

percent s

1.424(3) 1.483(-3)

1.424(3) 1.604(-3)

8.490 1.246(-5)

7.209 1.268(-5)

4.331 1.262(-5)

8.648 1.256(-5)

7.064 1.266(-5)

5.742 1.262(-5)

4.811(1) 9.699(-6)

4.842(1) 9.823(6)

4.588(1) 1.008(-5)

3.834(1) 1.031(-5)

4.903(1) 9.892(-4)

5.139 1.718(-4)

6.951(-1) 4.279(-4)

6.691(1) 9.815(-4)

1.066(1) 9.829(-4)

1.411 9.848(-4)

2.757(1) 2.390(-4)

6.307 1.259(-5)

2.110 1.271(-5)

RMS errors in species concentration

Products

RMS error in

species and

temperature

Maximum

rnls error,

percent

Intermediates

Maximum Reaction

rms error, time,

percent s

1.000(2) (b)

1.000(2) (b)

1.539(1) 1,205(-5)

1.148(1) 1.206(-5)

6.328 1.206(-5)

1.423(1) t.207(-5)

1.077(1) 1.220(-5)

8.410 1.204(-5)

6.616(2) 8.900(6)

6.616(2) 8.900(-6)

3.722(2) 9.407(-6)

1.645(2) 9.790(-6)

2.815(1) 9.897(-4)

9.831 1.719( 4)

1.313 4.278(-4)

7,273(1) 9.822(-4)

2.580(1) 9.834(-4)

3.232 9.646( 4)

4.460(1) 2.390(-4)

9.555 1.216(-5)

3.032 1.216(-5)

Maximum Reaction

rms error, time,

percent s

1.000(2) (b)

1.000(2) (b)

1.269(1) 9.166(-6)

9.513 8.991(-6)

5.632 6.355(-6)

l. 190(1) 1.207(-5)

9.233 8.275(-6)

7.496 7.158(-6)

5.386(2) 8.900(-6)

5.386(2) 8.900(-6)

2.845(2) 9.407(-6)

1.405(2) 6.240(-6)

2.231(1) 1.000(3)

5.203 9.755(-4)

4.223(- I) 9.856(-4)

1.922(1) 4.033(-4)

2.188(1) 1.000(-3)

1.795 9.995(-4)

2.580(1) 1.207(-5)

7.893 1.216(-5)

2,515 1.216( 5)

8.257(2)

8.259(2)

1.156(1)

8.596

4.786

1.057(1)

8.167

6.366

4.679(2)

4.679(2)

2.586(2)

1.150(2)

3.447(1)

6.580

8.685(- 1)

5.761(1)

1.948(1)

2.219

3.079(1)

7.218

2.311

Reaction

time,

s

1.483(-3)

1.604(-3)

1.221(-5)

1.222(-5)

1.234(-5)

1.207(-5)

1.220(-5)

1.229(-5)

8.900( - 6)

8.900(-6)

9.407(-6)

9.790(-6)

9.895(-4)

1.719(4)

4.278(-4)

9.820(-4)

9.834(-4)

9.840(-4)

2.390(-4)

1.228(- 5)

1.236(-5)



TABLE V.--ERRORS FOR TEST PROBLEM I

[Numbers in parentheses designate powers of 10.]

Method
Local Errors in species concentration Error in

tolerance, temperature

EPS Reactants [nlermediates Products

Maximum Species Reaction Standard Maximum Species Reaction Standard Maximum Species Reaction Standard Maximum Reaction Standard

error, tinre, solution, error, time, solution, error, time, solution, error, time, solution,

percent s mole fraction percent s mole fraction percent s mole fraction percent s K

(a) (a) -I.00012) la) (a) (a)

1.6041-3) 6.383(-3) -1.00012) (a) (a) (a) -1.000121 (a) (a) (a)

1.271(-5) 4.300(-2) 2,25411) OH 1.2211-51 2.515(-31 1.719(11 CO 2 1.221(-5) 3.8101-3)

1.2221-51 2.558(-3) 1.280(11

1.2061-5) 1.9561-3) 7.104

1.207(-5) 1.9771-3) 1.625111

1.2201-51 2.449(-3) 1.224111

1.2171-51 2.3311-3) 9.425

8.900(-6) 3.650(-4) 7.434(2)

8.900(-6) 3.650(-4) 7.434(2)

I 1.2331-5) 4.482(-3)
1.2431-5) 5.089(-3)

12311-51 4.362(-3)

1.2331-5) 4.478(-3)

1,2421-51 5.004(-3)

8.900( 6) 7.2911-41

8.900(-6) 7.2911-41

9,507(-61 7.4311-4) 4.038(2) _ 9.707(-6) 1.8151-31

1.0111-5) 2.9211-31

EPISODE-A 5xl0 -_ 2.510131 H__ 1.4831-31 6.377(-3) -I.00012/ (a)

EPISODE-B 5 x l0 -6 2.50713)

LSODE-A l×10 -z -1,54111)
lxl0 -3 -I.320(11
I x l0 -4 -7,920

LSODE-B 1×10 --_ -1.571(I)

1 x l0 --] - 1,29311)

1×10 -4 - 1.0491l)

GCKP84 hi × b0 -2 --7.918111

5×10 --_ --7.9380)

I X 10 --t --7,681(11 1.0081--51 1,0321-I) 6.002(2)

l×10 '_ --6,622111 ' 1.0311--51 8,555(-2) 2.553(2) " 9.890(--6) 1.2641--31 1.755121

1.2681-51 4.543(-2) 1.669111

1.2621-5) 5.012(-21 9.115

1.2561-51 5.473(-2) 2.070111

1.2661-51 4,645(-2) 1.573111

1,2621-51 5.0181-21 1.219(I)

9.699(-6) 1,2421-I) 1.056131

9.823(-6) 1.1841- l) 1.056(3)

-6.194111 1.4831-31 2627.7

-6,194(l) 1,604(-31 2627.4

3.121 1.2461-51 1288.3

2.408 1.2451-51 1284.2

1.404. 1.252(-51 1309.9

2.951 1.2501-51 1301.6

2.341 1.2471-51 1292.5

1.845 1.252(-5) 1307.9

4.257111 9.699(-6) 1086.5

4.311111 9.823(-6) 1104.2

3.464(I) 10081-51 1151.8

2.187111 1.0311-5) 1209.6

CHEMEQA 1 x 10-2 -6.45711) O 2 1.000(-3) 9.1431-31 -4.296111 O 1.000(-3) 7.9511-41 -3,75111) NO 1.0001-3) 1.6621-3) -1.873 9.919(-41 2627.8

lx 10 3 8.506 4.195(-41 1.001(-21 1.355(11 1.719(--4) 1.4701-3) 8.917 9.743(-4) 1.6311-3) -3.5541-11 7.417(-5) 2472.1
1 x 10 -.4 1.070 _ 5,053(-4) 9.723(-3) 1.789 _ 4.278(-4) 9.1641-41 7.1831-11 9.986(-4) 1.6601-31 -4.970(-2) 3.7311--41 2614.1

CHEMEQ-B 1 × 10 -2 9.746111 H2 9.815(-41 6.300(-3) 1.054121 N 9.828(-4) 3.3111-7) 3.10711) 3.6141-41 7.642(-4) 2.868 1.0001-31 2625.7

I x 10 -3 1.495(11 02 5.653(-4) 9.562(-3) 3.141(I) 9.835(-4) 3.3101-71 3.776(I) 1,0001-31 I.(-,491-31 1.519 t.0001-3) 2625.7

1×10 -4 2.123 l 9.852(-4) 9.1051-31 3.842 _ 9,646(--4) 3.322(-7) 3.070 9.995(4) 1.6481-31 1.8631-1) 1.0001-31 2625.7

CREKID I× 10 -2 -4.446111 _ 2.390(-4) 1.1371-21 -6.006111 O 2.390(-4) 1.2031-3) 3.53111) CO 2 1.2341-5) 4.5711-3) 6.204 1.2481-51 1295.9

I × 10 -3 - 1.152111 H2 1.2591-5) 5.140(-2) 1.391111 OH [.216(-51 2.3151-31 1.073111 1.2401-51 4,905(-3) 2.091 1.2521-51 1312.5

Ix 10 `4 -3.890 H,_ 1.2711-51 4.244(-2) 4.381 OH 1.216(-51 2.3341-31 3,393 _ 12361-51 4.6511-3) 6.6521 I) 1.2441-51 1284.3

aSee text.

bTermlnatedat t _ 3.7 × 10 -5 s because of instability.



Method

EPISODE-A

EPISODE-B

LSODE-A

LSODE-B

GCKP84

CHEMEQ-A

CHEMEQ-B

CREK 1D

aNot nccdcd.

bSee text.

Local

tolerance,

EPS

5x10-4

] xI0 -4

1 x 10 -5

5 x 10 -4

1 x 10 -4

IxI0-5

1 x 10 -2

1 x 10 -3

1 x 10 -4

1 x 10 -2

lx10-3

1 X 10 -4

1 x 10 -4

1×10-2

lxlO-3

1 × 10 -4

IXI0-2

IXI0 -3

1X 10 -4

1 X 10 -2

IXI0 -3

1 X 10 -4

I X 10 -2

1xlO-3

1 x 10 -4

Local

absolute

error

tolerance

for

species
mole

numbers,

ATOLSP

(a)

r

1 x 10 -8

1
1 x 10 .9

1 x 10 -8

1 x 10 -12

(a)

I
i
I
!

Initial

step

length,

ho,
s

lx10-7

1 x 10 -7

1 x 10 -6

1 xl0-10

Ixl0-11

1 x 10 -9

(a)

r

1XI0-6

1 X 10 -6

1 x 10 -6

(a)

TABLE VI.--ROOT-MEAN-SQUARE ERRORS FOR TEST PROBLEM 2

lNumbers in parentheses designate powers of 10.]

Maximum temperature

change between

updates of rate
coefficients and

thermodynamic

properties.

/,%

K

(a)

1.5

2.0

2.0

RMS errors in species concentration

Reactants

Maximum Reaction

rms error, time,

percent s

4.993(2) 3.660(-3)

2.398(1) 4.449(-6)

1.528(1) 4.550(-6)

2.691(2) 4.206(-5)

2.467(1) 4.400(-6)

1.893(1) 4.537(-6)

9.517 4.741(-6)

9.408 4.677(-6)

9.722 4.703(-6)

9.797 4.616(-6)

6.272(- 1) 6.762(-4)

9.922 4.656(-6)

1.355(- 1) 6.456(-4)

3.024(1) 3.999(-6)

2.138(1) 4.117(-6)

8.134 4.321(-6)

2.622(1) 1.000(-3)

2.025 9.957(-4)

2.022(- 1) 1.000(-3)

2.466(1) 5.508(-4)

2.789 1.000( - 3)

1.531 1.000(-3)

1.539 1.000(-3)

6.131(-1) 1.000(-3)

3.080(- 1) 9.847(-4)

Intermediates

Maximum Reaction

rms error, time,

percent s

1.000(2) (b)

1.843(2) 3.351(-6)

8.161(1) 3.288(-6)

4.127(2) 4.385(-5)

1.994(2) 3.359(-6)

1.185(2) 3.295(-6)

4.414(I) 3.441(-6)

4.114(1) 3.388(-6)

4.438(1) 5.983(-7)

4.589(1) 3.420(-6)

2.620 1.382(-7)

4.541(1) 6.044(-7)

1.536(-I) 4.061(-8)

3.461(2) 2.950(-6)

1.493(2) 3.015(-6)

3.272(I) 2,937(-6)

2.683(1) 1.000(-3)

2.230 9.780(-4)

2.059( - 1) 9.960(-4)

2.820(1) 5.374(-4)

5.937 1.000(-3)

2.826 9.999(-4)

4.880 1.717(-4)

2.514 1.620(-4)

7.408(- 1) 2.061(-4)

Products

Maximum

rms error,

percent

1.000(2)

1.005(2)

4.331(1)

8.660(1)

1.073(2)

6.284( i )

2.375(1)

2.185(1)

2.289(1)

2.461(1)

6.968

3.056(3)

1.728(1)

1.776(2)

7.826(I)

1.703(1)

3.117(1)
2.370

2.420( - 1)

1.781(1)

4.814

2.648

5.036

2.942

7.964( - 1)

RMS error in

species and

temperature

Reaction Maximum

time, rms error,

s percent

(b) 2.904(2)

2.701(-6) 1.218(2)

2.711(-6) 5.408(I)

3.644(-5) 2.801(2)

2.68t(-6) 1.316(2)

2.521(-6) 7.831(1)

2.969(-6) 2.938(1)

2.976(-6) 2.737(1)

2.751(-6) 2.944(1)

2.991(-6) 3.053(1)

8.337(-6) 3.484

1.280(-5) 1.528(3)

7.700(-6) 8.641

2.190(-6) 2.272(2)

2.526(-6) 9.865(1)

3.072(-6) 2.176(1)

1.000(-3) 2.697(1)

9.954(-4) 2.133

9.973(-4) 2.074(-1)

6.790(-4) 2.380(1)

9.996(-4) 4.631

1.000(-3) 2.341

1.157(-4) 3.959

t .453(-4) 2.148

1.698(-4) 6.122(- 1)

Reaction

time,

s

3.660(-3)

3.351(-6)

3.288(-6)

4.385(-5)

3.359(-6)

3.295(-6)

3.441(-6)

3.388(-6)

5.983(-7)

3.420(-6)

8.337(-6)

1.280(-5)

7.70O(-6)

2.950(-6)

3.015(-6)

2.937(-6)

1.000(-3)

9.956(-4)

9.973(-4)

5.391(-4)

1.000(-3)

1.000(-3)

1.717(-4)

1.620(-4)

2.061(-4)



TABLE VII.--ERRORS FOR TEST PROBLEM 2

[Numbers in parentheses designate powers of 10.]

Melhod Local

tolerancc,

error,

percent

EPISODE-A 5 x 10 .4 9.896(2)

Ixl0 --t -4.120(1)

lxl0 -5 -2.648(I)

EPISODE-B 5 x 10 -4 4.679(2)

IxIO -4 -4.234(I)

lxl0 5 -3.273(1)

LSODE-A I x 10 -2 - 1.663(1)

i x 10 -3 - 1.638(1)

lxl0 4 -1.696(I)

LSODE-B lxlO -2 -1.700(I)

I x 10 -3 1.401

blxl0-4 -1.726(I)

EPS Reactants

r
Maximum Species Reaction Standard

time, solution,

s mole fraction

02 3.660(-3) 1.408(-2)

H2 4.449(-6) 1.619(- 1)

142 4.550(-6) 1.446(1)

02 4,206(-5) 2.603(-2)

H2 4.517(-6) 1.517(-1)

4.537(-6) 1.482(-I)

4.741(-6) 1.255(-1)

4.677(-6) 1.356( - I)

4.703(-6) 1.314(-1)

4616(-6) 1,457(-1)

CO 2 6.762(-4) 2.352(-4)

H2 4.656(-6) 1.389(- 1)

Maximum

error,

percent

- 1.000(2)

3.196(2)

1.392(2)

9.981(2)

3.396(2)

2.057(2t

7.289(1)

7.100(1)
7.929(I)

7.613(1)

-5.935

8,084(1)

cl x 10 -4 -3.023( - 1) CO 2 6.456(-4) 2.353(-4)

GCKP84 1× 10 -2 -5.147(1) H, 3.999[- 6) 1.827(- 1)

lxl0 -3 -3.672(1) / 4.117(-6) 1,624(-l)

lxl0 4 -1.418(I) _' 4.321(-6) 1.284(-1)

CHEMEQ-A 1 x 10 .2 -4.910(1) O 2 1.000(-3) 1.412(-2)

I x 10 3 4.226 / 9.957(-4) 1.413(-2)

I × 10 -4 3.888(- 1) J,, 9.979(-4) 1.412(-2)

CHEMEQ-B 1x 10 -2 3.936(l) H 2 5.368(-4) 4.913(-2)

1x 10 3 5.854 O 2 1.000(-3) 1.373(-2)

I x 10 -4 3.049 1.000(-3) 1.373(-2)

CREKI D 1x 10-2 3.039 1.000(-3) 1.420(-2)

1× 10 -3 1.258 1.00O(-31 1.420(-2)

Ixl0 -4 6.579(-1) ' 9.847(-4) 1.420(2)

aSee text.

bATOLSP = 10-8

CATOLSP = 10-12.

-3.183(-1)

6.238(2)

2,589(2)

5.441(I)

-4.398(I)

4.255

3.882(-I)

4.431(1)

8.470

4.015

6,714

3.302

1.028

Errors in species concentration Error in

temperature
Intermediates

Species Reaction

time,

s

(a) (a)

H20_, 3.351(-61

H202 3.288(-6Z

HO, 4.385[-5_

H202 3.359(-6_

3.295(-@

3.441( 6',

NO 2 6.059(-7',

HO 2 5.983(-7J

H202 3.420(-6_

OH 1.382(-71

HO 2 6.044(-7)

H 4.061( 81

FI?O 2 2.950(-6_

3.015(-61
2.937(-6)

HO 2 9.826(-4)

9.780(-4)
9.973(-4)

N 5.375(-4)

9.876(-4
1.000(-3)

H20 ", 1.717(-4)

1.825(-4)
_, 2.061(-4

Standard

solution,

mole fraction

(a)

1.534(-7)

1.233(-7)

4.782(-6)

1.534(-7)

1.228(-7)

1,637(-7)

1.317(-7)

1.274(-7)

1.524(-7)

3.13l(-7)

1.308(-7)

1.243(-7)

1.208(-7)

1.516(-7)

1.156(-7)

1.395(-5)

Products

Maxinmm Species Reaction Standard

error, time, solution,

percent s mole fraction

1.000(2) (a) (a) (a)

2.009(2) H20 2.701(-6) 2.179{-3)

8.662(1) H20 2.711(-6) 2.235(-3)

-1.000(2) (a) (a) (a)

2.147(2) H20 2.681(-6) 2.035(-3)

1.257(2) 2.521(-6) 1.373(-3)

4.751(1) 2.969(-6) 3.530(-3)

4.369(1) 2.976(-6) 3.587(-3)

4.578(I) 2.7511-6) 2.071(-3)

4.921(1) r 2.991(-6) 3.726(-3)

-1.394(1) NO 8.337(-6) 1.363(-7)

6.112(31 / 1.280(-5) 9.425(-7)

-3.456(1) _ 7.700(-6) 1.174(-7)

3.551(2) H20 2.190(-6) 1.387(-3)

1.565(2) / 2.526(-6) 3.190(3)

3.407(1) _ 3.072(-6) 1.189(-2)

-4.719(1) NO 2 1.000(-3) 1.967(-6)

Maxinlun_ Reaction Standard

error, time, solution,

percent s K

-4.958(I) 3.660(-3) 2908.5

3.284 4.349(-6) 1569.9

1,873 4.371(-6) 1572.4

-3.890(1) 4.260(-5) 2457.7

3.434 4.284( 6) 1562.1

2.430 4.361(-6) 1570.3

1.117 4.543(-6) 1583.7

1.090 4.563(-6) 1585.9

1.125 4.549(-6) 1584.4

1.158 4.432(-6) 1571.1

1.054( - 1) 1.965(-5) 2170,9

1.147 4.521(-6) 1581.1

1.164(-2) 8.537( 5) 2679.5

4.575 3.872(-6) 1554.8

2.824 3.946(-61 t562.2

9.296(-11 4.151(-6) 1584.8

1.346 1.588(-4) 2829.8

1.395(--5) 3.677

1.395(--5) 3.882(--1)

3.574(-6) -3.016(I)

3.896(-6) 7.041

3.897(-6) 3.937

8.967(-7) -6.875

8.624(--7) --3.871

8.032(--7) -1.165

9.954(-4) 1.966(-6)

9.973(-4) 1.967(-6)

6.790(-4) 1.772(-61

9.996(-4) 1.894(-6)

I.(Y,)0(-3) 1.894(-6)

N20 1.717(-4) 4.788(-7)

1.825(4) 4.988(-7)
2.061(-4) 5.365(-7)

-2.147(-I) 2.432(-4) 2888.6

-9.072(-3) 2.577(-4) 2893.4

1.625 7.911(-41 2905.5

4.152(-1) 9.966(-4) 2903.2

1.7881-1) 1,000(-3) 2903.2

-6.604(- I) 1.157(-4) 2760.4

-3.304( I) 1.453(-4) 2811.8

-9.044(-2) 2.061(-4) 2870.2



ATOLSP, the runs with LSODE-A and LSODE-B were

required to satisfy the accuracy criteria described in reference
2. Several of the runs with the other codes also satisfied these

criteria. For LSODE-B and EPS- 10 -4, two ATOLSP

values (10 -8 and 10 _2) satisfied both the accuracy and
execution time criteria for P2. Table VI includes results

obtained with both values, to illustrate the effect of ATOLSP

on the accuracy. However, the error plot given in figure 13
was generated with ATOLSP = 10-12

The maximum percent errors in each species type and

temperature are given in tables V and VII for PI and P2. For
each species type the species incurring the maximum error,

the reaction times at which the maximum errors occurred, and
the standard solution values for species mole fractions and

temperature at these times are listed.
For test problem 1 the runs with EPISODE-A and

EPISODE-B and EPS _> 5× 10 6 predicted little or no

change in the composition and temperature after an elapsed

time of 1 ms. Hence, maximum errors of - 100 percent were
obtained for both intermediates and products (table V).

Because the temperature and the more active reactants H2,
CO, and 02 display monotonic behavior (fig. 2) the

maximum errors in reactants and temperature occurred at
tend, the final time (_> 1 ms) at which the solution was

generated. Both EPISODE-A and EPISODE-B required only

six steps to complete the problem, and, because a new step
size is considered after every successful step, to,d was

significantly greater than 1 ms. For intermediates and products
maximum rms errors of 100 percent were obtained at several
time values; hence, reaction times and standard solution values

are not given in tables IV and V for these two species types.

Also, no species name is listed in table V for either type
because all intermediate and product species incurred the
shown maximum errors.

The solution returned by EPISODE was also found to depend

on the output stations specified by the user. For example, for
some combinations of output times, EPISODE B (with
EPS = 1 x 10-6) predicted no change in the composition and

temperature after an elapsed time of 1 ms. However, by

stipulating only one output station (at 1 ms), the correct
solution was obtained. For this problem the run with GCKP84
and EPS = 1x l0 -2 exhibited serious instability and was

therefore terminated. For reasons just discussed, no error plots
for EPISODE-A, EPISODE-B, and the run with GCKP84

and EPS = 10 2 are presented.

Similar remarks apply to the results obtained for P2 with
EPISODE-A and EPS >_ 5 × 10-4, and with EPISODE-B
and EPS _> 5×10 -3. The run with EPISODE A and

EPS = 5 × 10 -4 required only seven steps to complete the

problem and tend was therefore significantly greater than 1
ms. For this EPS, lor exactly the same reasons given for P1,

the following quantities are not shown in tables VI and VII:
reaction times at which the maximum rms errors occurred in

the intermediates and products, intermediate and product
species incurring the maximum errors, the reaction times at

which the maximum errors occurred, and the standard solution
values.

For EPS = 5x 10 4 and 10 3 EPISODE-B successfully
completed P2 in that correct solutions were returned at t = 1

ms. However, during heat release they were significantly
inaccurate. For example, the run with EPS = 5 × 10 4 pre-

dicted little change from the initial composition and temperature

until t = 40 _s when heat release began. In contrast, the
standard solution shows that heat release is almost over by

this time (fig. 3). As a result, maximum errors of - 100 percent
were observed for the products (table VII). This error was

incurred by several product species at several time steps;
hence, table VII does not list the product species name,
reaction time, and standard solution value. Because of the

difficulties experienced by EPISODE-A and EPISODE-B,
error plots for EPS _> 5 x 10 4 are not presented.

As discussed previously, all results with GCKP84 were
obtained with h0 = 10-6 s, although its current default value

is 5 x 10-8 s. The effects of this change in h0 on the accuracy

and execution time were studied by generating results with
h0 = 5x10 8 s. The maximum errors incurred by the

solutions produced with both h0 values are given in tables
VIII to XI. For this study new standard solutions using
h0 = 5 × 10 8 s were established to bias the results in favor

of the current default value for h0. Despite this bias, tables
VIII to XI show that in almost all cases h0 = 10 6 s produced

more accurate solutions than h0 = 5x 10 8 s. (No results are
given for P1 and EPS = 10 -2 because the runs with both h0

were terminated due to instability.) For P1 the results with
h 0 = 10 -6 S were significantly more accurate for all values of

EPS (tables VIII and IX). Surprisingly, for h0 - 5 x 10-8 s
the solution with EPS = 10 -4 incurred substantially greater

errors than those generated with the larger EPS. For P2 the

differences in errors obtained with the two h0 were small for
EPS = 10 -2 and 10 3, but for EPS = 10 -4, h0 = 10 -6 S

produced significantly more accurate results than
h0 = 5 x 10 -s s (tables X and XI). Finally, the execution

times required with the two h0 are comparable for both
problems and all EPS (tables VIII and X).

Examination of figures 4 to 17 shows sudden increases in
the error plots for intermediate species and products. This

behavior is caused by species reaching values of 0.1 ppm or
greater (figs. 2 and 3) and introducing their contributions to

the rms errors. For example, for Pl the intermediate species
producing the sudden increases in the error plots are H (at

t = 2 _s), O (at t = 4 _s), OH (at t = 4 p,s), and N (at t =
20 _,s). For products the pertinent species are H20 (at t =

2 /xs), CO2 (at t - 4 /_s), and NO (at t --- 15 p,s).
EPISODE-A, EPISODE-B, LSODE-A, LSODE-B,

GCKP84, and CREK1D all experienced difficulty tracking the

standard solutions during induction and early heat release when
the species and temperature change rapidly (figs. 2 and 3).

The essentially isothermal induction period ends and heat
release begins when the temperature starts to rapidly increase

from its initial value. During induction, the reactants and
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TABLE VIII.--EFFECTS OF INITIAL STEP LENGTH ON ROOT-MEAN-SQUARE ERRORS, MEAN INTEGRATED RMS ERROR, AND EXECUTION TIME

FOR GCKP84 AND TEST PROBLEM 1

Local

tolerance,

EPS

5x10-3

Ix10-3

Ixl0 -4

Initial

step length,

h0,

s

5xl0 -8

lx10-6

5 x 10 -8

1 x10-6

5x 10-s

1 x 10 -6

Reactants

Maximum

rms error,

percent

52.89

44.16

44.87

38.61

51.71

21.26

RMS errors in species concentration

Reaction

time,

s

9.409 x 10 -6

9.612x 10 -6

9,929 x 10 -6

9.894 x 10 -6

9.361 x 10 -6

1.011xl0 -5

Intermediates

Maximum Reaction

rms error, time,

percent s

1.976 x 103 3,942 x 10 -6

356.2 8.900 x 10 -6

325.1 9.387x 10 -6

169.4 9.307 x 10 -6

3.472 x 103 2,307 x 10 -6

50.73 2.900 X 10 -6

Products

Maximum Reaction

rms error, time,

percent s

1.995 x 103 4.918x10 -6

282.0 8,900 × 10 -6

297.7 3.554 x 10 -6

132.4 9.307 x 10 -6

3.323x 103 2.674x 10 -6

47.86 2.900 X 10 -6

RMS error in

species and

temperature

Maximum Reaction

rms error, time,

percent s

1.515x103 4,918x10 -6

250.2 8.900x i0 6

235.2 3,554 x t0 -6

119.3 9.307x 10 -6

2.455 x 103 2.307 x 10 -6

37.82 2.900 x 10 -6

Mean CPU

integrated execution

rms error, time,

_'rms s

7.622 x 10 -2 0.87

1.938x 10 -2 .86

2.375 x 10 -2 .97

1.381 x 10 -2 .98

1.084x 10 -I 1.0

4,729x 10 -3 1.1

TABLE IX.--EFFECTS OF INITIAL STEP LENGTH ON ERRORS INCURRED BY GCKP84- FOR TEST PROBLEM 1

Errors in species concentration Error in

temperature

Reactants Intermediates Products

Local

tolerance,

EPS

5xlO 3

Ixl0 3

1x10-4

Initial

step

length,

h0.
s

5xl0 -s

lxl0-b

5 x 10 -8

I×I0 -6

5XI0-8

lX10-6

Maximunl

error,

pe_ent

-84.77

-74.02

-75.63

-66,61

-83.68

-38.08

Species

H2

Reaction Standard

time, solution,

s mole fraction

8,858× 10-6 1.467 x 10 -_

9.612 x 10-_, 1.027x 10 -I

9.929 x 10 -6 1.060× 10-i

9.894×10-6 8.070x 10 -2

9,106x 10-6 1,409x 10 -I

1.011×10-5 6.182x 10 -2

Maximum Species

error,

percent

3.098×103 OH

" 567.4

520.9 t
264. I

4.918x IO"_ 0

68.07 OH

Reaction Standard

time. solution,

s mole fraction

8.006x 10 -6 1.521 x I0 a

8.900x 10 6 6.320x 10-4

9.465 x 10 -6 8.112×10 4

9.407 x 10 -6 1,250x 10-3

2.307x10 6 1.298xl0 7

9.690x 10 -6 1.963 x 10 -3

Maximum Species

error.

percent

2.452 x 103 CO:

392.9 ]
364.6

186.8

4.912x 103 H20

-58.62 CO 2

Reaction Standard

time, solution,

s mole fraction

4.918x 10 6 5.397×10-6

8.900×10-6 1.248×10 -3

3.554×10-6 5.822x10 -7

9.507×10 6 2.517×10-3

2.307x10-6 1.146x 10 -a

2.900× 10 -6 4.348 x 10 -7

Maximum Reaction

error, time.

percent s

60.89 9.409x 10 6

32.58 9,612x 10 -6

32,35 9.929x 10 -6

22.28 9.707x 10 -6

55.25 9,520x I0 6

8.525 1.000× 10 -s

Standard

solution,

K

1065.6

1153.2

1142.9

1175.2

1077.9

1259.2



TABLEX.--EFFECTSOFINITIALSTEPLENGTHONROOT-MEAN-SQUAREERRORS,MEANINTEGRATEDRMSERROR,ANDEXECUTIONTIME
FORGCKP84ANDTESTPROBLEM2

Local
tolerance,

EPS

I xlO -2

1×10-3

Ix 10 -4

Initial

step length,

ho,

s

5x 10-8

1 × 10 -6

5×10-8

1 × 10 -6

5x10-8

1 x10-6

Reactants

Maximum

rms error,

percent

32.54

31.44

22.30

23.14

16.96

10.76

RMS errors in species concentration

Reaction

time,

s

4.070× 10 -6

3.999 x 10 -6

4.220× 10 -6

4.117x10-6

4.295 x 10 -6

4.321 × 10 -6

Intermediates

Maximum Reaction

rms error, time,

percent s

431.1 2.995 x 10 -6

405.3 2.950 x 10 -6

159.3 3.095 x 10 -6

180.3 3.015×10 -6

98.25 2.962 x 10 -6

47.27 3.072 x 10 -6

Products

Maximum Reaction

rms error, time,

percent s

225.1 2.595x 10 -6

203.9 2.407 × 10 -6

86.97 2.470× 10 -6

93.41 2.526× 10 -6

51.31 2.471×10 -6

24.61 2.937 x 10 -6

RMS error in

species and

temperature

Maximum Reaction

rms error, time,

percent s

282.9 2.995 x 10 -6

265.5 2.950 x 10 -6

105.5 3.095 x 10 -6

118.9 3.015x 10 -6

65.03 2.962 × 10 -6

31.46 3.072 x 10 -6

Mean CPU

integrated execution

rms error, time,

_rms s

1.935 x 10 -2 1.7

2.115×10 -2 1.8

6.281 x 10 -3 2.0

7.891 x 10 -3 1.9

4.277 × 10 -3 2.3

2.396 x 10 -3 2.4

TABLE XI.--EFFECTS OF INITIAL STEP LENGTH ON ERRORS INCURRED BY GCKP84 FOR TEST PROBLEM 1

Local

tolerance.

EPS

I x 10-'--

Ix I0-3

Ix 10-4

Initial

step

length,

ho.

s

5 x 1(1-8

lxl0-6

5x10-s

l x 10 -6

5x10 -8

lx10-6

Maximum

error,

percent

-55.38

-53.41

-38.38

-39.63

-29.37

-18.70

Specics

H2

Errors in species concentration Error in

temperature

ProductsReactants

Reaction Standard

time, solution,

s mole fraction

4.070×10 -6 1.783×10 I

3.999×10 6 1.903x 10-1

4.220× 10 -6 1.524 × I0-i

4.117×10-6 1.702× I0-_

4.295x 10-6 1.399x10-1

4.321×10-6 1.355x 10-1

Maximum

error,

percent

778.7

742.2

271.8

317.4

169.0

78.12

Interntcdiates

Species

H202

Reaction Standard

time. solution,

s mole fraction

2.995x10 6 1.214x10 7

2.950x 10-6 1.038x 10 -7

3.095x 10-6 1.714x l0 -7

3.015x10 6 1.304xi0 7

2.962 x 10 -6 1.082 × 10 -7

3.072x10-6 1.582x 10-7

Maximum

error,

percent

450. I

407.8

173.9

186.8

102.6

49.23

Species

H2O

i

Reaction Standard

time. solution,

s mole fraction

2.595×10 -6 3.382x 10 -3

2.407x 10-6 2.130x I0-3

2.470× 10 -6 2.486× 10 -3

2.526×10 -6 2.853×10 3

2.471 × l0 -_ 2.490× 10 -3

2.937 x 10 -6 7.767 × 10 -3

Maximum Reaction Standard

error, time, solution.

percent s K

5.000 4.070x tO -_ 1570.7

4,861 3.872x t0 -6 1550.5

3.008 3.970x 10 -6 1560.1

3.132 4.117x10 -6 1575.8

2.131 4.103x10 o 1574.3

1.259 4.151 xl0 -6 1579.6



TABLEXII.--EFFECTSOFABSoLuTEERRORTOLERANCEFORSPECIESMOLENUMBERSONROOT-MEAN-SQUAREERRORS,MEANINTEGRATEDRMS
ERROR,ANDEXECUTIONTIMEFORTESTPROBLEM2WITHLSODE-BANDEPS= 10-5

Localabsolute
errortolerance

forspecies
molenumbers,

ATOLSP

10-7
10-8
10-9
I0-10

RMS errors in species concentration RMS error in

species and

Reactants Intermediates Products temperature

Maximum

rms error,

percent

17.07

9.853

5.601 xl0 -I

7.943 x 10 -2

Reaction

time,

s

4.575 x 10 -6

4.694 x 10 -6

4.753 × 10 -6

4.758 × 10 -6

Maximum

rms error,

percent

134.8

45.23

1.828

4.541X 10-

Reaction

time,

s

2.956 x 10 -5

6.031 × 10 -7

3.368 x 10 -6

6.498 x 10 -8

Maximum

rms error,

percent

1.453 x 105

2.224 x 104

4.044 x 103

40.51

Reaction

time,

s

1.090 × 10 -5

8.241 × 10 -6

8.117x10 -6

6.725 x 10 -6

Maximum

rms error,

percent

7.263 x 104

1.112×104

2.022 × 103

20.25

Reaction

time,

s

1.090× 10 -5

8.241 x 10 -6

8.117xi0 -6

6.725 x 10 -6

Mean CPU

integrated execution

rms error, time,

_rms s

5.543 1.7

2.792 x 10 -I 4.2

4.011 X 10 -2 3.2

9.421 X 10 -4 2.5

TABLE XIII.--EFFECTS OF ABSOLUTE ERROR TOLERANCE FOR SPECIES MOLE NUMBERS ON ERRORS INCURRED FOR TEST PROBLEM 2 BY LSODE-B AND EPS = 10 5

Local absolute

error tolerance

for species

mole numbers,

ATOLSP

1×10-7

I×10-s

Ix10-9

1×10-t0

Maximum

error,

percent

-29.57

-17.17

--9.834× 10 -I

--1.405 x 10 -I

Reactants

Species [ Reaction

time,

s

H. 4.636× 10 -6

[" I 4"694x 10-6

] / 4.753xl0 6
¢ 4 758x 10 -6

___ I "

Standard

solution,

otole fraction

1.422 x 10 I

1.328 x 10-i

1.237 x 10-i

1.230 x 10 -I

Maximum

error,

percent

330.1

80.59

-4.080

-8.137x10 -t

Errors in species concentration

Intermediates

Species Reaction Standard

time. solution,

s mole fraction

N 2.956x10 -5 1.087 x10-7

HO 2 6.031X 10 -7 1,301 x 10 -7

OH 1.431 xl0 -7 3.170 ×10-7

OH 6.498 x 10 -8 2.386× 10 7

Maximum

error.

percent

2.905 x 105

4.448 x 104

8.087 x 103

-81.01

Products

Species Reaction

time,

s

NO 1.090xlO -5

• 8.241 x 10 6

' 8,117x10-6

J, 6.725x I0 -6

Standard

solution.

tnole fraction

4.451 × 10 -7

l. 109 x 10 -7

1.002 x 10 -7

2.622 × 10 7

Error in temperature

Maximum Reaction

error, time,

percent s

2.141 4,453 x 10 -6

1.140 4.487x 10 6

6.266× 10-z 4,560 x 10 6

1.049x t0-2 4.586×10 .6
i

Standard

sOluKon.

1573.4

1577.3 [

1585.6 ]

1588.5 ]



temperature remain fairly constant. EPISODE, LSODE, and
CREK1D have virtually no errors in the reactants and

temperature until heat release begins at -9 #s (P1) and 3/zs

(P2), when the errors in these quantities start to increase. For
GCKP84, however, the error increases start at earlier times. The
difference, more noticeable for P1, is due to the smaller
reaction times obtained with this code for the onset of heat

release. Although, for consistency, we used EPS = 10 -5 to

generate standard solutions with GCKP84, values of EPS as
small as 10 -9 (for P1) and 10 -8 (for P2) were found to be

necessary to achieve tolerance independence of the

temperature-time trace at early times.
During induction, the intermediate species and the product

H20 increase rapidly from negligible initial concentrations.
The errors in the intermediates and products in this regime

are, therefore, relatively large. During early heat release
(t <- 15/zs for P1 and t -< 6 #s for P2), these errors continue

to remain large as more products are formed and the

intermediate species continue to change quickly. In this regime,
the reactants show a sharp decrease, and the temperature rises

significantly. Many of the ODE's are unstable (ref. 2), and
so errors introduced at any step will grow as the integration

proceeds (refs. 1 and 24). For P1 the reactants and temperature
vary rapidly between 9 and - 15/zs. For P2 the temperature

rise is not as steep, but the reactants change sharply between
3 and - 6/zs. Between these times, the errors in the reactants

and temperature are relatively large (figs. 4 to 7, 9 to 14, and
17). For P2 the errors incurred at early times are less for

CREK1D than for LSODE because of the much smaller step
lengths used by the former code in these regimes (refs. 2, 3,

and 12). During late heat release and equilibration, however,
EPISODE, LSODE, and GCKP84 incur much smaller errors.

In these regimes the ODE's are stable (ref. 2), and so the errors
decay as the integration proceeds, provided, of course, that
the numerical method is stable.

The error plots for EPISODE, LSODE, and GCKP84

illustrate the dangers of assessing the accuracy of a technique
(or of a run with a certain value for EPS) by comparing

solutions at the final time (_ 1 ms for both problems). Note

that, although all these codes have negligible errors at the final
times, the errors can be significant at early times. For example,
with GCKP84 and EPS = 10 3 the maximum rms error in

products is over 500 percent for P1. These plots also indicate
that if the main objective of the calculations is to study postheat

release phenomena (e.g., NO formation), the use of large error

tolerances does not result in significant errors. The large errors
incurred at early times, however, have important implications,
especially in developing and validating reaction mechanisms.

A procedure commonly used for this purpose is to compare

ignition delay times (e.g., time required for the temperature
to increase by a specified amount) predicted by the mechanism
with those measured in a shock tube (e.g., refs. 25 and 26).

The temperature error plots show that caution must be

exercised in using some of the codes to develop reaction
mechanisms by applying the above procedure. If, for example,

we assume that the ignition delay time is the time required for

a 25 K rise in the temperature, values of - 11 and 3.5/zs are
obtained for Pl and P2, respectively. At these times, the error

in temperature ranges from 10 to 25 K for EPISODE, 2 to
5 K for LSODE, 15 to 200 K for GCKP84, and 0 to 10 K
for CREK1D.

In contrast to EPISODE, LSODE, GCKP84, and CREKID,

CHEMEQ incurs virtually no errors during induction and early
heat release (figs. 7, 8, 15, and 16). Therefore, this code can

be used to generate accurate ignition delay times. CHEMEQ
is superior in these regimes because of the very small step

lengths that it selects (refs. 2 to 5). However, as pointed out
by Young and Boris (ref. 10), the continued use of the hybrid

method used in CHEMEQ results in the global errors
increasing with time. For example, with CHEMEQ-A and
EPS = 10 -2, the rms error in reactants has risen to almost

50 percent for P1 (fig. 7) and 25 percent for P2 (fig. 15). The
situation is worse with CHEMEQ-B (figs. 8 and 16). During

equilibration, for CREK1D, also, the errors grow (figs. 9 and
17) because the formulation used by it in this regime is based
on that used in CHEMEQ. However, CREK1D incurs smaller

errors than CHEMEQ for most of the species types and for
the temperature. For EPS _< 10 -3 both CHEMEQ and

CREK 1D either are more accurate than or compare favorably
with LSODE during late heat release and equilibration.

Figures 4 to 17 and tables IV to VII show the large variations
in the maximum errors for the different techniques. EPISODE

and GCKP84 experience the greatest difficulty tracking the

solutions at early times--rms errors in excess of 100 percent
are obtained with the two codes. In contrast, the errors incurred

by LSODE, CHEMEQ, and CREKID are significantly less.
Comparisons of the runs with the largest EPS value show that
LSODE is the most accurate code for P1, and CREK1D for

P2. Comparing the errors in the different regimes shows that

CHEMEQ is the most accurate code during induction and early
heat release. During late heat release and equilibration,
however, the other codes are more accurate.

Examination of figures 4 to 17 and tables IV to VII shows

that all techniques are tolerance effective in the sense that a
decrease in the local tolerance generally results in decreased

global errors. We note, however, that with LSODE not all
plots show an error decrease with EPS. On the contrary, for
some runs the error increases with a reduction in EPS (figs.

4, 5, 12, and 13). This behavior can be explained by examining

the nature of the error control performed in LSODE. As
discussed in the section "Computational Procedure," the error

control selected to be performed by LSODE is mixed relative
and absolute for species mole numbers and pure relative for

the temperature. For pure relative error control, the estimated
local truncation error, di, in species i approximately satisfies

the inequality

d i < EPS jail (28)

For pure absolute error control, d i approximately satisfies
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d i <_ ATOLSP (29)

These two inequalities are approximate because the code

controls only the rms norm of the estimated local truncation

errors in all variables and not the estimated local truncation

error in each variable.

Equations (28) and (29) show that, since ai << 1, relative

error control is more accurate for a given value of the local

error tolerance. Hence, relative error control is appropriate

for the two test problems. However, when c_i -- 0, relative

error control cannot be used. This problem is resolved by using

a mixed relative and absolute error control, and

d i < EPS [oil + ATOLSP (30)

Equation (30) shows that for the error control to be relative,

ATOLSP must satisfy the inequality

ATOLSP << EPS I_il (31)

if ATOLSP >> EPS [oil the error control is absolute. In this

study, we have considered only species with mole fractions

(x i) > 0.1 ppm. This value ofx i corresponds to ai = 3 x 10-9

and 4x 10 9, respectively, for P1 and P2. Hence, for the error

control to be always relative, ATOLSP must be less than

3 x 10 9 EPS and 4x 10 -9 EPS, respectively, for P1 and P2.

Only the runs with EPS = 10 -2 for P1 satisfy these require-

ments. Hence, they are the most accurate at early times when

the mole numbers of many intermediate and product species

have very small values. Note that for P2 even the standard

solutions do not satisfy the requirement on ATOLSP. To ensure

their accuracy, the standard solutions generated with LSODE-

A and B were checked, respectively, against the solutions

obtained with LSODE-A and B using EPS = 10 5 and

ATOLSP = 10 -15, which satisfy equation (31). These compar-

isons showed agreement to three significant figures for all

species with mole fractions > 0.1 ppm. For LSODE-A agree-

ment to three significant figures was obtained for all species,

even those with mole fractions significantly smaller than

0.1 ppm. But for LSODE-B the agreement for mole fractions

< 0.1 ppm was not good for NO. For all other species,

however, good agreement was obtained for mole fractions

> 10 I I. This observation indicates that LSODE-A is more

accurate than LSODE-B.

Equation (30) also shows that for given values of EPS and

ATOLSP, oi must satisfy the following inequality

ATOLSP
0 i >> =_ Omi n (32)

EPS

to achieve relative error control. As oi increases from zero,

the error control becomes less absolute and is equally relative

and absolute at Omin. For oi > Ornin, the error control becomes

increasingly relative as ai increases. Hence, the quantity Omin

may be regarded as the value at which, for increasing oi, the
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error control starts to change character from being more

absolute to becoming more relative. Because x i = _ri/_r,,,, the

value of xi (-Xmin) corresponding to O-min is given by

Xmi n = ATOLSP/(EPS _,,,) (33)

For P1, Xmin = 3 × 10-7 and 3 x 10-6 for EPS = 10-3 and

10 -4 and the ATOLSP given in table IV. These values are

attained by most of the species at t = 5 and 7/xs, respectively

(fig. 2). Hence, until these times the solutions with EPS = 10 -3

and 10-4 are expected to be worse than or, at best, as accurate

as the run with EPS = 10 2. Examination of figures 4 and

5 shows that the errors in intermediates and products for

EPS = 10-3 and 10-4 are worse than those for EPS = 10-2

until t = 6 and 5 tzs, respectively, for LSODE-A, and until

t -- 7 and 6/_s, respectively, for LSODE-B. In addition, all

maximum rms and maximum errors, almost all of which occur

at t > 7/zs, exhibit reductions with decreasing EPS (tables IV

and V).

For P2 and LSODE-A, Ymi n has values of 2.5x 10 -5,

2.5 × 10-4, and 2.5 × 10-3, respectively, for EPS = 10 2,

10 3, and 10 4. Some of the species never reach these values

(fig. 3). Hence, the errors do not show much sensitivity to

changes in EPS (fig. 12 and tables VI and VII). For LSODE-

B, however, the values used for ATOLSP ensure comparable

levels of relative error control for EPS = 10 2 and 10 3; for

EPS = 10-4, the control is more relative in the sense that it

has a smaller value of ATOLSP/EPS. The errors, therefore,

display decreases with reductions in EPS (fig. 13 and tables

VI and VII). The sudden increases in the product errors around

t = 10/xs were caused by the species NO, which LSODE-B

had difficulty tracking (table VII).

The above discussion should be regarded as strictly approx-

imate because it applies only to the estimated local truncation

errors, whereas figures 4 and 5 give the estimated global errors,

which represent the cumulative effects of the local errors. The

number of integration steps required up to the relevant reaction

time should therefore also be considered. However, the global

errors accumulate in a complicated manner from the local errors.

Other factors that must be taken into account are that LSODE

controls only the norm of the estimated local errors and that

different species reach mole fraction values of 0.1 ppm at

different times. Finally, although we have ignored species with

xi < 0.1 ppm, they do incur errors whose magnitudes are

controlled by ATOLSP and which grow with reaction time in

the initial combustion regimes, for reasons previously given. It

is therefore difficult to draw definitive conclusions about the

ATOLSP to EMAX ratios required for combustion kinetics

problems. For example, for P1, EPS = 10 -3 is expected to

produce more accurate results than EPS = 10-4 for the inter-

mediates and products at early times, especially between 5 and

7 _s (see eq. (33) and the discussion following it), but figures

4 and 5 show the opposite behavior for both LSODE-A and

LSODE-B. One conclusion that can, however, be made is that

care must be exercised in specifying ATOLSP.



Theeffectof ATOLSPonsolutionaccuracyis further
illustratedforP2andLSODE-Bbytheresultspresentedintables
VI andVII (EPS= 10-4)andXII andXIII (EPS= 10-5).
Notethesignificanterrorreductionsobtainedbydecreasing
ATOLSP.ComparingtheerrorsgivenforLSODE-Bintables
VIandVI1withthoseintablesXIIandXIII,respectively,shows
thatfor thesamevalue(=10.-8or 10.9) of ATOLSP,
EPS= 105doesnotproducesignificantlymoreaccurate
solutionsthanthelargerEPS.

TablesXII andXIII showthat,althoughtheuseof large
valuesof ATOLSPcanresultin significanterrorsforthe
intermediatespeciesandproducts,theeffectonthetemp-
eratureissmall.Therefore,if theuseris interestedonlyin
temperatureversustimetracesatearlytimes,asforexample
indevelopingreactionmechanismsfromignitiondelaytimes,
fairlylargeATOLSPvaluescanbeassigned.

TheresultsobtainedaboveindicatethattheATOLSPneeded
toachieveacceptableaccuracydependsasmuchonthenature
ofthesolutionasonthevaluespecifiedforEPSandthemini-
mummolefractiontobeconsideredintheerroranalysis.The
estimateforATOLSPgivenbyequation(31)maynotbesmall
enough,asforexample,P1andEPS= 10-2(tableIV).On
theotherhand,theestimatemaybeneedlesslyconservative.
Forexample,althoughtheintermediatespeciesincreasemuch
morerapidlyforP2thanforP1,largerATOLSPproduced
resultsthatsatisfiedtheaccuracycriteria.Becausethevalue.
neededforATOLSPisafunctionoftheproblem,it canbe
obtainedonlyaltertheproblemissolved.Themajorproblem
associatedwithusingLSODEtosolvechemicalkineticrate
equationsisthereforethetrial-and-errorprocedurenecessary
toobtaintheoptimalvalueofATOLSP,thatis,thevaluethat
minimizestheCPUtimewhilesatisfyingprescribedaccuracy
requirements.NotethatforP2,althoughtherunswithLSODE-B
andATOLSP= 10.8 and10 12(EPS= 104)requiredthe
sameCPUtime,thelatteris significantlymoreaccurate
(tableVI).Incontrast,thertmswithATOLSP= 109,1010,
and10-I1requiredabout2.7,1.7,and1.7sof CPUtime,
respectively.Thetrial-and-errorsearchfortheoptimalATOLSP
canbetimeconsuming,especiallyforlargesystemsofODE's.
Theuseof anextremelysmallATOLSPtoensuresolution
reliabilitycanresultinexcessiveCPUtimes.Forexample,
for P2therunusingLSODE-BwithEPS= 10.5 and
ATOLSP= 10 Jl requiredabout3.4s of CPUtime;in
contrast,therunwithATOLSP= 10-15requiredalmost20s,
althoughthesolutionwasnotsignificantlydifferent.

TheerrorcontrolusedinEPISODEandGCKP84ispure
relativeforspecieswithinitiallynonzeromolenumbersand
forthetemperature;it is,however,pureabsoluteforspecies
withinitiallyzeromolenumbers.Sincemostofthespecies
havezeroinitialmolenumbersforbothtestproblems,theerror
controlismostlyabsolute.Hence,forthesamevalueofEPS,
EPISODEandGCKP84arenotasaccurateasLSODEfor
solvingchemicalkineticrateequations.Toachievecomparable
accuracy,especiallyatearlytimeswhenai is verysmall,
smallvalueshavetobeusedforEPS(ref.2).Therunswith

EPISODEandGCKP84werethereforemoreexpensivethan
theoneswithLSODE(refs.2and3).ModifyingEPISODE
to employthesameerrorcontrolasLSODEproduced
significantreductionsinexecutiontimes.Preliminaryresults
withtherevisedEPISODEindicatethatit isasfastasLSODE.
Forexample,forP1therunswiththemodifiedEPISODEA
(EPS= 10-2, 10-3, and104andtheATOLSPgivenin
tableIV)required,respectively,0.35,0.41,and0.61s.The
executiontimescompareveryfavorablywiththoserequired
byLSODE-A:0.37,0.46,and0.63s(refs.3and4).The
aboveobservationsindicatethattheerrorcontrolusedin
EPISODEandGCKP84is inappropriatefor combustion
kineticsproblems.

Examinationof tablesIV to VII showsthattemperature
calculationmethodAdoesnotnecessarilyproducelessaccurate
solutionsthanmethodB.Onthecontrary,formostoftheruns
methodA ismoreaccurateforallcodes;thisresultismost
apparentforCHEMEQandP1.

Toprovideamorecomprehensivemeasureforcomparing
theaccuracyof themethodsexamined,weadoptedthe
followingprocedure:Foreachrun,ameanintegratedrms
error,_rms, was defined as

1 f tend.... -- erm_(t) dt (34)
ten d 0

where tend (_> 1 ms) is the end of the integration time interval

and em,,_(t) is given by equation (27).

Equation (34) provides a single quantity that is a measure

of the average error incurred in solving the complete problem.

The integral in this equation was evaluated numerically using

Simpson's rule (e.g., ref. 23), modified for unequal step sizes.

For runs requiring an odd number of integration steps, the

trapezoidal rule (ref. 23) was used on the last two mesh points.

The effects of h0 on _;rms for GCKP84 are given in tables

VIII and X for P1 and P2. Except for the run with

EPS = 10 3 for P2, h 0 = 10-6 s incurred either comparable

or significantly smaller _;rms than h 0 = 5x l0 -8 s. Note,

further, for P1 and h0 = 5 × 10 -s s the substantial increase

in _;_ms when EPS is decreased to 10 -4 (table VIII).

The variation of _'rms with ATOLSP is given in table XII

for P2 using LSODE-B and EPS = 10-5. This table illustrates

the increasing accuracy obtained by reducing ATOLSP. It also

shows that ATOLSP must be chosen carefully, as discussed

previously.

The variations of _;rms with the user-specified local tolerance,

EPS, are shown in figures 18 and 19 for P1 and P2,

respectively. We have included the run with EPISODE-B and

EPS = 5 × 10-4 in figure 19 because it was successfully com-

pleted. The _;rm_ given in figure 19 for LSODE-B and
EPS = 10 -4 was that obtained with ATOLSP= 10 -12

These figures show that all methods are tolerance effective

(i.e., decreasing EPS results in reduced g_m_). For both test

problems temperature calculation method A is as accurate as
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Figure 18.--Variation of the mean integrated rms error with the local tolerance

for test problem 1.

method B. In many cases it is significantly more accurate,
especially with CHEMEQ and EPISODE. For P2 and
EPS = 10 -4, LSODE-B is more accurate than LSODE-A

because it used a smaller ATOLSP (table VI).

For the same value of EPS, EPISODE and GCKP84 are

significantly less accurate than LSODE (figs. 18 and 19)
because the error control used in the two codes is inappropriate

for chemical kinetics rate equations. For all techniques, note
the significant discrepancies between the values specified for

the user-supplied local tolerance and the errors actually
incurred. With CHEMEQ-B, a value of EPS - 10 -2 (1 per-

cent) has resulted in an average error of almost 50 percent.
The relatively large _;_msincurred by CREK1D and CHEMEQ

is due to the difficulties which these codes experienced tracking

the standard solutions during late heat release and equilibration.
With LSODE, especially the runs with EPS = 10 2, the

correspondence between EPS and grins is better. These plots
show that for a given value of EPS, LSODE is the most

accurate code currently available for solving chemical kinetic
rate equations. However, for P2, especially with the smallest
EPS examined, GCKP84, CHEMEQ-A, and CREK1D

compare favorably with LSODE (fig. 19).

Figures 20 and 21 present the variations of the computational
work (expressed as the CPU time in seconds) with the mean

integrated rms error for problems 1 and 2, respectively. Note

the large differences in the CPU time required by the different
codes to achieve comparable accuracy. For P1 and a l/2 percent
mean integrated global error, the CPU time varies from about

0.4 s for LSODE-A to over 40 s for CHEMEQ-A. In general,

to produce an order of magnitude reduction in grins approx-

100 I-" _ EPISODE-A imately doubles the computational cost. For both test problems

]_ • EPISODE-B LSODE is the most efficient code in the sense that it requires
]- tel LSODE-A the least CPU time to attain a specified accuracy level.
[- • LSODE-B Figures 20 and 21 show that the CPU times required by

]-" V GCKP84 _ ,_ temperature calculation method A are less than, or compare
10 -1 L A CHEMEQ-A
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Figure 19. Variation of'the mean integrated rms error with the local tolerance

for test problem 2.

10° __

10-1

10-4

I i l=lilll I I l illltl I i l Il+Itl I _ l ililll

10 -3 10 -2 10 "1 100

Mean integrated rms error, %rms

Figure 20.--Variation of the CPU time with the mean integrated rms error

for test problem 1.
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favorably with, those required by method B. This difference

is most pronounced for CHEMEQ and EPISODE. For

example, for P2 and a 1 percent _;rm_, CHEMEQ-A required

only about half as much CPU time as CHEMEQ-B (fig. 21).

Note that for EPISODE-B the computational work increases

with increasing error.

EPISODE-A compares very favorably with LSODE for P2

(fig. 21). However, the solution generated by EPISODE can

be strongly dependent on the value selected by the user for

h 0 and a poor guess can result in incorrect and unstable

solutions (refs. 2 to 5). It can also result in excessive CPU

times. For example, the run using EPISODE-A with

EPS = 10 -4 and h 0 = 10 .8 s required about 129 s for P2; in

contrast, the run with h 0 = 10 v s required only 0.59 s.

Conclusions

The accuracy of several codes (EPISODE, LSODE,

GCKP84, CHEMEQ, and CREK1D) in solving combustion

kinetic rate equations has been examined in detail. The

accuracy studies were made by applying the codes to two

practical combustion kinetics problems. Both problems described

adiabatic, homogeneous, gas-phase chemical reactions and

included all three combustion regimes: induction, heat release,

and equilibration.

During induction and early heat release, when the species

mole numbers and temperature change rapidly, EPISODE,

LSODE, GCKP84, and CREK1D had difficulty tracking the

solutions. The errors incurred by EPISODE and GCKP84 in

these regimes were significantly larger than those incurred by

LSODE and CREK1D. In contrast, the solutions generated

with CHEMEQ displayed virtually no errors during induction

and early heat release. However, during late heat release and

equilibration, the errors obtained with CHEMEQ increased

significantly. In these regimes, the other codes were more

accurate.

Among the codes examined, LSODE was the most accurate

for solving chemical kinetics problems. This study has also

shown that LSODE is the most efficient code, that is, it

required the least execution time to attain a specified accuracy.

The major difficulty associated with its use is the trial-and-

error procedure necessary to obtain optimal values for the local

absolute error tolerances for the variables. A poor guess for

the absolute error tolerance can result in excessive execution

times or in seriously inaccurate solutions.

An important conclusion is that calculation of the temperature

by solving the algebraic enthalpy conservation equation can

be more accurate and efficient than integrating its differential

equation.
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Appendix A

Description of Codes Studied

The ordinary differential equations (ODE's) (2), (9) and (12) K 1

describing homogeneous gas phase chemical reactions can be Yi,, = E OLj'nYi'n-J + h.

generalized as follows: j= 1

• dye
yi - _t = f( (yk) ) i,k = 1 ..... N

yi(to) = given

(A1)

where for temperature calculation method A (see the section

"Evaluation of Temperature")

Yi = ai i = 1 ..... Ns

N=N s

for temperature calculation method B

(A2)

Yi : °i i = 1 ..... N s )

YNs+ l : T

N=Ns+ I

(A3)

and for the code GCKP84

Yi = _ri i = 1..... N s )

YNs+l = V YNs+2 ----p YNs+3 = T _ (A4)
N=Ns+ 3

In vector notation equation (A1) becomes

dy
- dtt =f(Y) y(to) = given (A5)

where the underscore is used to denote a vector quantity. A

matrix is denoted by a boldface letter. This notation is used

throughout this appendix. In equation (A5) the N-dimensional

column vectors y and f contain the dependent variables and

their temporal derivatives, respectively.

The initial-value problem is to determine values for [Yi] at

one or more times in a prescribed integration interval, given

_/1 and the values _Yi(to)l at the initial time to. We now

describe the codes studied in the present work and how they

solve the above problem.

EPISODE AND LSODE

Both these codes use linear multistep methods of the form

(refs. 6 to 9)

K2

l_j,,fn-j i: 1 ..... N

j=0

(A6)

where _,n is an approximation to the exact solution yi(t,,),

f,,, (equal to f([Yk.,/)) is an approximation to the exact

derivative yi(t,,) (equal tof(_'k(tn)/)), and the [aj,,/and [13j,,1

(t30,, > 0) are associated with the particular formula selected

by the user. The options include a variable-step, variable-order

implicit Adams method (suitable for nonstiff problems) of

orders 1 to 12, and a variable-step, variable-order backward

differentiation formula (BDF) method (suitable for stiff

problems) of orders 1 to 5. As discussed in the section

"Methods and Codes Examined," the BDF method was more

efficient for the problems examined in this study. Therefore,

the discussion is restricted to this method. For a BDF method

of order q, K 1 = q, K 2 = 0, and equation (A6) reduces to

q

Yi,n = _a c_J,nYi,'-j + hd3°,"fi," i = 1..... N (A7)

j=l

The step length h n can vary from one step to the next in

EPISODE but is held constant for q + 1 consecutive successful

steps in LSODE. Hence, for EPISODE, [O_j,nl and [13j,,/ can

vary from one step to the next, but in LSODE they are

predetermined constants corresponding to the order used.

Both codes use a predictor-corrector process to solve for

In. An explicit method generates a predicted value, _01,

which is then corrected by iterating equation (A7) to convergence,

that is, the improved estimates _ml (m = 1..... M) are produced

until the magnitude of the difference (_ml_ _m-q), in

EPISODE, or (hn_ ml -h,_nm-q), in LSODE, approaches

zero within a specified accuracy. Here, ytml and _ml are,

respectively, the approximations generated for 11, and f_ on

the m th iteration, the integer M is the number of iterations

required for convergence, and _ml is accepted as the numerical

solution at t,, provided it satisfies a prescribed local accuracy

requirement. At each iteration m, hn'_nml is computed in LSODE

from _ml via the relation

q

__nnm] = _ o_j,nYn,j + hn_o,n]An m] (A8)

j=l

so that the pair (y[m], h,_ml) satisfies the BDF method (eq.

(A7)) exactly. The predicted values of Y_ and h,_,, denoted

by h,_ °1, also satisfy equation (A8).

The predicted quantities _01 and h,_ °l are obtained by a

qth-order Taylor series expansion as follows: The history of

the solution is maintained in the Nordsieck array (which is
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aTaylorseriesarray)z,,ofsizeN x (q + 1) (e.g., ref. 1).

The ith row (i = 1..... N) contains the q + 1 elements Yi ....

h,,Yi.,,, h_/2! _. ........ hq/q/ _,,q_), where y_:_l is the approximation

to (dJY,./dF)1,. The (q + 1) columns of z,, are numbered from

0 to q, and the jth column (j = 0,1 ..... q), which will be

denoted by the vector z,, (j), contains the vector h,,Y_,/)/j[ of the

fh-order scaled derivatives. If z,,_l has been obtained, the

predicted history matrix, z},°1, at t,_ is given by (ref. 1)

z,_°l = z,,_ iA(q) (A9)

where A(q) is a (q+ 1) x (q+ 1) matrix, with element Aik(q)
given by

l O j<k I
j,k = O, 1..... q

A#.(q) = (i) j > k

The binomial coefficient, (_.), is defined as

(9 - i:
k.r (j - _).,

Thus, the predicted array z,l°l is obtained by a simple qth_

order Taylor series expansion by using equation (A9). The

matrix z,,-[°l contains predicted values of Yn and its scaled

derivatives up to order q, the current method order. Note,

however, that because a qth-order Taylor series expansion

method is used, z_°l(q) = z,,_ j(q).

The estimates 11,1,,1and, in LSODE, h,,_l mj (m = 1 ..... M)

are generated, as described below, until the iteration

converges. The local error test is then applied and, if passed,

the Nordsieck history matrix z,, is constructed by using the
relation

z,, = z_°l + e,,l,, (q) (A 10)

where

e,, = _z MI - y,/0]

in EPISODE, and

e,,= h,,Y,l - h,,YL

in LSODE. The (q + 1)th-dimensional vector 1,,(q)

1,,(q) = (lo.,,(q), /i,,,(q) ..... lq,n(q)) (All)

contains the method coefficients for the Nordsieck history

formulation of the qth-order BDF method. Because EPISODE

and LSODE use different calculation procedures, the tli.,,l

values are, in general, different in the two codes. For

EPISODE, /,,(q) depends on the method order and the step

length history, satisfies 10.,, (q) = 1 and ll._ = 1//3o.,,, and has

to be recomputed at the start of each step. For LSODE, l,, (q)

is a function of only q, satisfies 10,,,(q) =/30.,, and ll.,, (q) = 1,

and has to be recomputed only when the method order is

changed.

To correct the initial estimate y,_01 (i.e., to solve equations

(A7)), both codes include a variety of iteration techniques.

For combustion kinetics problems the most efficient is the

Newton-Raphson iteration (ref. 2), which is given by the

recursive relation

q

P(Y'Im+q- Y'Iml) = E _ i'''Y'' J + h'flo"a¢" (_¢"1) _ y,l,,,I

j=l
(A12)

for m=0,1 ..... M-1. The N×N iteration matrix P is

given by

P = I - h,fio.,,J (A 13)

where I is the identity matrix and J is the Jacobian matrix,

with element Jij given by

J_j= Of/ayj i,j = 1 ..... N

For this method, much computation time is required to form

the Jacobian matrix and to perform the linear algebra necessary

to solve equation (A12). To reduce this computational work,

P is not updated at every iteration. For further savings, it is

updated only when it has been determined to be absolutely

necessary for convergence. Hence, the iteration matrix is only

accurate enough for the iteration to converge, and the codes

may use the same matrix over several steps of the integration.

In any case, both EPISODE and LSODE update P at least

every 20th step. The linear algebra required to solve equation

(A12) is performed by the LU method (e.g., ref. 27), rather

than by explicitly inverting the matrix, which requires

prohibitive amounts of computer time (ref. 23).

Convergence of the estimates is ascertained as discussed

below. EPISODE constructs a vector _Ym_x, which depends

on the user-specified value for the local error control IERROR

as follows:

IERROR = 1 (absolute error control):

Ym_xi = 1 i = 1..... N

IERROR = 2 (pure relative error control):

Ymax,= ]_,,, II i= 1..... N
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IERROR= 3(semirelativeerrorcontrol):

Ym_x,= max[IY,,,,_ _1,IY,,,, 2I1 for i that satisfy Yi(t0) _ 0

= max[l, ]Y,,,,-I L) for i that satisfy yi(to) = 0

(A14)

The test for iteration convergence is based on the successive

differences (_yH _ y, Im 11), as compared with Ym_x and the

user-supplied local error tolerance parameter EPS. Conver-

gence is said to occur if

1 i,,, " .... _< CEEPS (A15)
6,,, N Ym x,

i=1

In LSODE an error weight vector EWT is constructed as

follows:

EWTi = RTOLi [Yi,n- J[ + ATOLi i = 1..... N

where RTOLi and ATOLi are, respectively, the user-supplied

local relative and local absolute error tolerances for the ith

component. Both RTOL and ATOL can be specified either

as a scalar or an array, as discussed in the section "Computational

Procedure." The value of the user-supplied parameter ITOL

indicates whether RTOL and ATOL are scalars or arrays.

ITOL has four possible values which correspond to the types

of RTOL and ATOL as follows:

ITOL = 1: scalar RTOL and scalar ATOL

ITOL = 2: scalar RTOL and array ATOL

ITOL = 3: array RTOL and scalar ATOL

ITOL = 4: array RTOL and array ATOL

The convergence test is based on the successive differences

(h,,Ynt,,,l _ h,,yn[,,,-11) as compared with EWT, and is given by

k_(17 _ ( _ h,,Yi[/,, ,1._2_ % CL (A16)

6,,,= h.g, "J " _\1,2
i=1 EW_i' -// /

The factors CE and Q in equations (A15) and (A16) are

chosen to make the convergence tests consistent with the local

truncation error tests. In particular, Ce = 0.1 5E(q) and

Q = 5L(q)/2(q + 2), where 3e(q) and 5r(q) are the test

constants used, respectively, in EPISODE and LSODE for the

local error test (eqs. (A27) and (A28)) and where the variable

q indicates the method order.

If convergence is not achieved after the first iteration, the

codes anticipate the magnitude of 6,, one iteration in advance

by assuming that the estimates converge linearly. Thus, 6m+l,

which does not yet exist, is estimated by

=6 6m--a,,,C.,.6m + 1 m-- --
6m- I

where C,, ( =6m/6 .... l) is the convergence rate. This assum-

ption is used to modify the convergence tests (eqs. (A15) and

(A16)) as follows:

for EPISODE

9

6,;,--- CE EPS

where

6,_, = 6,,, min (1, C,',)

C,;, = max (0.1 Cm-I, Cm)

and for LSODE

9

! _6,,,& CL

where

t t
6,,, = 6,, min (1, 1.5 C,,)

C,'_ = max (0.2Cm_1, Cm)

Now, at least two iterations are required to compute Cm. For

the first iteration, C,',, is set equal to 1 in EPISODE and equal

to the last value of C,,, from the previous step in LSODE. For

the first iteration of the first step and after every update of

the Jacobian matrix, LSODE sets Cm equal to 0.7.

If the corrector iteration fails to converge in three iterations,

h, is reduced by a factor of four if P is current and the step

is retried; otherwise, P is updated at y = _01, and the step

is retried. The same corrective actions are taken by LSODE

if Cm > 2 after the second iteration. In the event of a singular

iteration matrix, both codes reduce h, by a factor of four and

attempt the solution with the new step length. The integration

is abandoned if either the step size is reduced below a minimum

value (both codes) or 10 convergence failures have occurred

(LSODE).

If the corrector converges after M (_<3) iterations, an

estimate of the local truncation error is made, as described

below. For a BDF method of any order k, the local truncation

error, d,,(k) at t,, is given by

d.(k) = ek +_h{+1y(k+_)(t.) (A17)

where the variable k denotes the method order and the constant

ek+l depends on the method formulation. For the variable-

step method used in EPISODE (ref. 6),

k

I-[
j=l

_3k+ j - (A18)
(k+ 1). t lt,,,(k)

4O



where and for LSODE

(J _ t,, - t,,_j j = 1 ..... k (A19)
h,

and ll.,, (k) is the second element of the (k + 1)th-dimensional

coefficient vector l,,(k) for the kth-order method (see

eq. (All)). For the formulation used in LSODE (ref. 28)

1
Ck+ I -- (A20)

k+l

The error d,, (q) in the qth-order method (i.e., k = q) used

on the n th step (i.e., (t,,_ 1,6,)) is estimated as follows: As

discussed previously, the last column of z,,, z,, (q) contains the

vector h qY(q)/nl and that of z,_°1, z,_°l(q) contains the vector

hqI_,,q) I/q!. The difference of z,,(q) and z}_°l(q) gives

z,,(q) - zl°l(q) = h_l+_t Y_,}q+') + O(h_[ +z) (A21)
q!

by using the mean value theorem for derivatives. From

equation (A10) the above difference is seen to be equal to

lqm (q) en, which, upon substitution into equation (A21), gives

hq+ly(q+l) = q! /q,n(q)e,,It _ It (A22)

if higher-order terms are neglected. This approximation is used

in LSODE. EPISODE, however, takes into account errors in

the past values and uses the following expression (ref. 6):

where

1
hi[+ Iv(q+ I) : -- en (A23)All

_/ n

q

j=l
")/11 --

(q+l)!
[1+ fi(-t"---t-"-J)l

j = 2 \t,_ 1 -- t, j/j

(A24)

and where (j is given by equation (A19).

By substituting the above expressions for h,,_Y,lq+l) and the

appropriate equation (A 18) or (A20) into equation (A 17) (with

k = q) and simplifying the resulting expressions, we obtain

the following estimates for d,, (q):

For EPISODE

1 1 + H -t,, _-__t,,_j . e,, (A25)
d,,(q) - ll,,,(q) j=2 \t,,_l - 6, j/ j

d_,,(q) - q!lq,,,(q) f,, _ lo,,,(q ) e,, (A26)
q+l q+l

because q!lq.,(q)= lo.,,(q) for the formulation used in

LSODE (ref. 28).

The local error tests used in the two codes are as follows:

For EPISODE

/_/ _ , \9\112

('/i n - 9

i:1 (_)) _<EPS

which, upon using equation (A25) can be written as

Oq _-

1 _ / \2\ 1/2
i= 1 \Ymaxi/ / 9

<_1

3E(q) EPS

(A27)

where the test constant 3E(q) is given by

3s(q) = ll.,,(q)

And for LSODE

[ 1+ I_Ij=2 t_,, _t"-t" 't]

( 1N i=_ ( di'n _2_1/2 9"1
\EWTi/; _< 1

By using equation (A26), the above inequality can be expressed as

i=1 9

Dq --= _< 1 (A28)
"3L(q)

where the test constant 3L(q) is given by

3L(q) - q + 1

lo.,,(q)
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If theerrortestfails,thefollowingcorrectiveactionsare
taken.In EPISODEh,, is reduced so that equation (A27) is

satisfied (see eqs. (A29) and (A30)), and the step is retried.

If the results with the new step length do not pass the error

test, h,, is reduced by a factor of five. After three and more

error test failures EPISODE reduces the step length by a factor

of 10 and reduces the method order by one if it is greater than

one. If an error test failure occurs with q = 1, the Nordsieck

history matrix z n_ I is reconstructed from Y,,_ l and f( Y,,_ 1).

After the first error test failure, LSODE reduces h,, and/or

q by one and then retries the step. If the error test is again

not satisfied, h, is reduced by a factor of five. After three and

more such failures, the method order is reduced to one if it

is greater than one, the step size is reduced by a factor of 10,

and the step is retried with a new Nordsieck history matrix

z,,_l, which is constructed from Yn-l and f(Y,,-O. Both

codes abandon the integration if h,, is reduced below a

minimum value. The maximum number of error test failures

allowed is seven in EPISODE and 10 in LSODE, after which

an error exit is taken.

If the error test is passed, the step is accepted as successful,

and the entire Nordsieck history array, z,, at t,, is updated by

using equation (A10).

Periodically, both codes attempt to change the step length

and/or the method order to minimize computational work while

maintaining prescribed accuracy. After every step on which

no convergence test or local error test failure occurs,

EPISODE attempts to use a larger step length at the same

method order. The new step size h'(q), where the variable

q denotes the order to be used on the next step, is chosen such

that it exactly satisfies the local error bound (eq. (A27)) by

assuming that the highest derivative remains constant. Then,

because d,, varies as h q+l (eq. (A17)),

I

h q, )q+ar...... -= - (A29)
hn

where r is the ratio of the step length to be attempted on the

next step to its current value and the subscript "same"

indicates that the current order (q) is to be used on the next

step. To allow for inaccuracies in the error estimate, certain

safety factors are built into the calculation procedure for h' (q)

to produce a smaller value than that given by equation (A29).

The formula used in EPISODE for rsame is

r .... = (A30)
1

(5Dq) q+l "t'- 10 -6

To increase the efficiency, both codes consider changing

the method order to q - 1 or q + 1 at periodic intervals. After

an unsuccessful step or when the current order equals the

maximum order, qmax, the choice q + 1 is not considered.

Also, if q = 1, the choice q - 1 is rejected. For each method

order q' the step size h'(q') that will exactly satisfy the local

error bound is obtained by using the procedure outlined above

for q' = q (eq. (A29)).

For the case q' = q - 1, d_(q-1) varies as hffy (q) (tn) (eq.

(A17)), which is equal to q!_zn(q). The local error test for

q' = q - 1 is as follows:

For EPISODE

l1 /9/I/2
i=1 9

Dq -I -_ <_ 1

5E(q- 1) EPS

where Zi,n(q) is the ith element of z,,(q) and (ref. 6)

ll( q -- 1 )
5E(q-- 1) --

q-1

j=l

And for LSODE

Oq_ 1

(1 _ (zi.n(q)']2_ 1/2
N i=1 \gw_i/] / ?

_<I

3L( q- 1)

where (ref. 28)

1
5L( q- 1) --

(q - 1)!

The step length ratio, if the order is to be reduced to q - 1,

is then given by

h'(q-1) (D@l) q (A31)/"down _ h_ -

where the subscript "down" indicates that the order is to be

decreased. If q = 1, raown is set equal to zero because q

cannot be decreased.

For the case q' = q + 1, d,(q+ 1) varies as hq+Zy(q+2)(tn),

which is estimated by differencing the quantity h q+ I_y(q+ 1)

over the last two steps and then using the mean value theorem

for derivatives. For EPISODE equation (A23) gives
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e-n ( hn _ q+l e-n-I -_hq+lY(q+l) -laq+lY(q+l),.n-n "'n -n
3",, \hn I/ 3",_- I

-_ "nhq+2y(q+2)__n + O( hq+3 )

where 3/,, is given by equation (A24). For LSODE, equations
(A22) and (A26) show that the approximation for hq+ Iy,}q+1)

is given by lo.,,(q)e,,. Because the methods used in this code

are based on a constant step size, the quantity lo,,,(q)[e,, - e,, 1]
gives

/0,,,(q)[e,, - e,,_d = h,q+2Y,lq+2) + O(hff +3)

The local error test for q' = q + 1 is given by
For EPISODE

i= 1 Ym.xi ?

Dq+l _ <- I

3E(q+ I) EPS

where (ref. 6)

5e(q+ 1) =
(q + 2)l_.n(q+ 1)

_q+ 1

And for LSODE

Dq+ 1

( 1N ( ein-ein 1_2_ 1/2"

_<1

3L(q+ 1)

where (ref. 28)

3c(q+ 1) - q + 2
_.,,(q)

The step length ratio, if the order is to be increased to q + l,
is then given by

h'(q+l)_( 1 _ q+2
rup- _ \Dq+_l/

(A32)

where the subscript "up" indicates that the order is to be

increased. If q = qmax and in LSODE after a failed step, rap is
set equal to zero to prevent an order increase.

For reasons given previously certain safety factors are built
into the step length ratios (eqs. (A29), (A31), and (A32)). The

formula used in EPISODE for rsameis given by equation (A30);
the other two ratios are computed as follows:

/"down 1

(5Dq_l) q + 10 -6

?'up
1

(lODq+l) q+2 + 10 -6

The formulas used in LSODE to calculate the step length ratios
are

/'down

,3I oq_l  +,o-61

rsamc =
1

1.2 I(Dq)q+l + 10-61

rup -- 1

1.2 I(Dq+l)q+_ + 10-61

The order corresponding to the maximum step length ratio

r = max(rdown, rsam_,r_p) and the step length ratio r are selected
to be attempted on the next step if, after a successful step, r _> 1.3

(EPISODE) or 1.1(LSODE); otherwise, both changes are
rejected. After a failed step, the order is decreased in LSODE

if rdown> ?'same;however, r is set equal to one if it is greater
than one. Several additional tests are performed on r before the

step length to be attempted next is selected. These tests may be
summarized as follows:
For EPISODE

- I-/7,,r......maxr,
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where the arrow denotes the replacement operator.

And for LSODE

 --minh..... (  min)l, ro....max

In EPISODE, hmi n and hma x are set equal to, respectively, h0,

the user-supplied value for the step length to be attempted on

the first step, and 10(tou t - tout.old) where tout is the current

time at which the solution is required and /out.old is the

previous value of tout . On the first call to EPISODE tout is set

equal to t0, the initial value of t. In LSODE, however, hmi n

(default value = 0) and hma x (default value = oo) are user-

supplied optional input parameters. The quantity rmin (used

only in EPISODE) is set equal to 0.1, and rm_× depends on

the code. In EPISODE, rm_x is set equal to 10 for the first

10 integration steps; thereafter, it is set equal to 1.5. In

LSODE, rmax is normally set equal to 10; for the first step

length increase following either a convergence or local error

test failure, it is set equal to two. In both codes for the first

step length increase for the problem rmax is set equal to 10 4

if no convergence or error test failure has occurred.

After the step length ratio r has been computed, the step

length h' to be attempted on the next step is given by

h' = rh,,.

Changes in method order (and step length in LSODE) are

attempted only after S successful steps with the same order (and

step length in LSODE), where S is normally set equal to q + 1.

However, if an unsuccessful step occurs, the step length and/or

order may be reduced. Following a failed error test or a failed

convergence test, if P is current, EPISODE resets S equal to

2 if it is less than two, but LSODE resets S equal to q + 1

irrespective of its current value. If three or more error test failures

occur on any one step S is set equal to five in LSODE and either

q + 1 (ifq > 1) or 10 (ifq = 1) in EPISODE. Following a step

for which the method order is not changed EPISODE sets S equal

to 2. If method order and step length changes are rejected because

r < 1.1, LSODE sets S equal to 3.

After every S - 1 successful steps, if q < qm_x, EPISODE

saves e and 3', and LSODE saves e, so that rup can be

computed. To minimize storage requirements, the vector e is

saved as the (qm_× + 1) th column of Z.

If the step size and/or method order is changed on the n th

step, z n has to be modified. For the case q' = q, h' _ h,,, the
= t jjth column (j 0,1 .... q) is multiplied by (h /h,,) . For the

case q' = q - 1, h' _ hn, the last column of the old z n is

ignored because it is not needed on subsequent steps. In

addition, EPISODE adjusts the first q columns to reflect the

reduced set of data represented by z, (ref. 6). In both codes

the above scaling by powers of (h'/hn) is performed on the

first q columns. For the case q' = q + 1, h ' ¢ h,_, EPISODE

adds a column of zeros, representing z,(q + 1), to z,,.

LSODE sets z,(q + 1) equal to h,q+l Y, lq+l)/(q + 1)!, which

is equal to lq,, (q)e,,/(q + 1) (see eq. (A22)). Both codes then

rescale all q + 2 columns of z,, by powers of h'/h,, to account

for any change in the step size.

The solution values at prescribed output times tout, i, tout,2 ....

are obtained quite easily from the history array. For each

output station toot, the codes continue the integration until the

first mesh point n for which t, _> tou t and then compute the

solution at to_t by a q,_+lth-order Taylor series expansion

about t,,:

q,',-t
q';+ (tout -- tn)J yCJ) /tout -- t"_ J. ,',

E 7 .... : E
j=0 j=0

(A33)

where q,_+l and h,;+ 1 are, respectively, the method order and

step size to be attempted on the next step.

Both codes start the integration with a single-step, first-order

method because information is available at only the initial

point, t 0. The Nordsieck history matrix z 0 at to is constructed

from the initial conditions y(to) and the ODE's as follows:

_o ( 0 ) =- _Yo= Y (to) ; Zo ( 1 ) =- ho_"o = haf(Yo)

where ho, the step size to be attempted on the first step, has

to be supplied by the user to EPISODE. In LSODE, however,

h 0 is an optional input variable and is computed by the code,

unless the user has specified a value for it.

GCKP84

GCKP84 is a general-purpose chemical kinetics code

designed to solve a wide variety of problems (ref. 15). It uses

the integration technique developed by Zeleznik and McBride

(ref. 18). As implemented in GCKP84 the integration

algorithm is an extensively modified version of the GEAR

package (ref. 19), which is similar to LSODE. In particular,

GEAR includes the two linear multistep methods discussed

previously. The methods are based on a constant step length,

and the method coefficients [/,l (eq. (A11)) have the same

values as in LSODE. Hence, I,,(q) is a function of only the

current method order q, satisfies lo,_ (q) = _3o,,, (see eq. (A7))

and ll,u(q) = 1, and has to be recomputed only when the

method order is changed. GCKP84 uses the same two linear

multistep methods but the maximum method order is different:

11 for the implicit Adams method and 8 for the BDF method.

The methods are also implemented differently as discussed

below. For reasons given previously we restrict discussion to

the BDF method (eq. (A7)).

As in EPISODE and LSODE, GCKP84 maintains the

solution history in the form of the Nordsieck history array,

z. The array z, at the current time t,, is obtained by using a
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predictor-corrector process. The prediction step is performed

in two stages. First, an initial estimate for z),°l is computed

via equation (A9); that is, the result of the prediction step used

in LSODE and EPISODE (and GEAR) serves only as an initial

estimate for z,_°1 in GCKP84. Second, the above result is

modified by means of an expression similar to equation (A10),

as follows: The difference (z,(1) -_z),°l(1)) (equal to e,, in

GEAR because ll(q) = 1, eq. (A10)), that is,

P is used for a maximum number of 20 steps. At each iteration

the approximation h,,l?)['d to h,_fn is computed by using equation

(A8). If any Yi!_f < 0, the iteration is abandoned. The step

length is then reduced by a factor of two, and the step is retried.

Convergence of the estimates is said to occur if any of the

following three tests, which are applied in the order they are

given here, is satisfied. The first test involves the magnitude

of the successive differences (I2,I''1 - _l'"-tl):

e. = h,_l>n - h,,l_,_°l (A34)

may be regarded as the error in the qth-order predictor relative

to the converged array z,. Equation (A10) gives the history

matrix z,, by adding the remainder term associated with using

the qth-order predictor. Of course, since e,, can be computed

only after the converged solution is produced at t,, the above

procedure cannot be used. However, since e,, 1 is available,

it can be used to improve the initial estimate given by equation

(A9). However, for additional accuracy improvement,

GCKP84 uses the quantity E obtained by accumulating the

errors Le,,/(see eq. (A35)). The quantity E,, may be regarded

as the estimated global error in h,,lV,_°1. Since E,, is not known

at the start of the step, GCKP84 uses E,,_ _ to improve the

estimate given by equation (A9) as follows:

/h \q+l
I" _n_ E 1

Z,[,0]_ Z,l 0l + \///hEr ,,-lg,(q)

where hE, which is normally equal to h,_ l, is the step size

that E,,_ i is based on and the term (h,/hE)q+l accounts for

this fact: the exponent q + 1 arises because the current order

is q and the local error varies as h q+l (see eq. (A17)). On

the first step, E,_ l (equal to _E0) is set equal to zero because

Y0 (equal to f(Y(to))) is known exactly.

After the prediction process is performed, the code checks
g[011the { _i.,. for negative values. Because it is physically impossible

for species concentrations, temperature, density, or velocity

to be less than zero, the results of the predictor step are rejected

if any _[ol < 0. Also, for each variable i for which the above

condition is obtained, Ei. ._ i is reset to zero if it is less than

zero. The step length is then reduced by a factor of two and

a new z,l,°l is generated. The above procedure is repeated until

either all predicted solution components are nonnegative or

the step length is reduced below a minimum value, hmin, in
which case an error exit is made.

To correct the initial estimate GCKP84 includes a variety

of iteration techniques. For reasons given previously the

discussion is restricted to the Newton-Raphson method. The

procedure used to generate the improved estimates y,l,,,l

(m = 1,2 .... ) is exactly the same as that described for LSODE:

solve equation (A12). The iteration matrix P (eq. (A13)) is

only accurate enough to achieve convergence, but the same

1 (_ (} z[ml - I;'[m I]_)2) 1/2

_l, ll -- ?

'" 7m2
i=1

where Ym_x,i is given by the expression used in EPISODE for

semirelative error control (eq. (A14). The second test is based

on the size of the current estimate for e,, relative to the size

of the current estimate for E,, (see eqs. (A34) and (A35)):

i=

, ylOl _ 2 1/2 9

/l_q+ 1 _ 0.1
/h,,\ I

nYi!':d- hnY/}0] _- t_) Ei'n-lJ

If for any i the denominator in the above summation is less

than 10 50, it is set equal to 10 2. The third criterion is

based on how rapidly the iteration is improving the solution

and is given by

i "_<10-3

_111 -- I

which can be applied only after two iterations. However, the

third test is applied only after five iterations and that too only

if 6,,, -< 5.

If convergence is not achieved after four iterations, the

iteration matrix P is updated at y = Y,I°1, and the correction

process is retried. This procedure is repeated four times, after

which, if the estimates have not converged, the step length

is reduced by a factor of two and the step is retried. The same

corrective actions are taken if on the fifth or subsequent

iteration 6m > 6m_ I. The above cycle of updating P every

four iterations and then reducing h,, by a factor of two after

four such updates is repeated until either convergence is

obtained or the step length is reduced below hmin, in which

case an error exit is taken.

After corrector convergence the local error test is applied.

This test is based on E,, which is estimated by using

/h \q+ 1
- ill E: + ,'- (A35)
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and can be written as

Ei,n

AI, i= 1 \Ymaxi// ?
= < 5 (A36)

Dq-

EPS 36(q) EPS 3G(q)

Dq+ I =

i = 1 Ymaxi

EPS 3G(q+ 1)

where EPS is the user-supplied local error tolerance and

3o(q) (equal to 2/lo.,, (q)) is the local error test coefficient for

order q.

If the error test fails, the error vector _E,,_ i is updated by

using equation (A35), and hE is set equal to h,, because E,,_ i

is now based on h,. The code GCKP84 then reduces the step

size and/or the method order by one and retries the step. After

three and more error test failures, the method order is reduced

to one if it is greater than one, and the step length is set equal

to hmin. A new Nordsieck history matrix at t,,_ _ is constructed

from Y,,_ l and f(Y,: 1), _E,,_ 1 is set equal to zero, and the

step is retried. After seven such failures or if h,, is reduced

below hmi n, the integration is abandoned and an error exit is

made.

If the error test passes, the step is accepted as successful,

the Nordsieck history array z,, is updated by using equation

(A10), E n is computed by means of equation (A35), and hE

is set equal to h,.

To increase the efficiency of the integration, the code

periodically considers changing the method order to q - 1 or

q + 1. Of course, if q = 1, the choice q - 1 is not considered.

After an unsuccessful step or if either q is equal to the

maximum method order, qma×, or Dq > 4 to(q), the choice

q + 1 is rejected. For each method order q' the step size

h'(q') is computed from an estimate of the local error in a

manner similar to the procedures used in EPISODE and

LSODE (eqs. (A30) to (A32)). For each method order q'

GCKP84 computes the step length ratio r(q') as follows:

r(q') -_ -h'(q') _ 1 (A37)
hn l

Oq,Dz)q'+ 1 A- 10 6

where

Oq_ 1 =

(Zin(q) _E))) 1/2

, -- 0.5lqn(q) i.n 1 -

EPS 3G(q-- 1)

and

The local error test coefficients 36(q-1) and 3G(q+ 1) for

orders q-1 and q+ 1, respectively, are given by

3G(q--1 ) = 2

and

3a(q+ 1) = 2(q + 2)/lo.,,(q)

The quantity D: in equation (A37) is set equal to 10, unless

A,, i -> 10 2s/x/N, in which case it is set equal to 0.1. If

A,, is also greater than 10 2s/x/N, D Z is set equal to A,/

A_ I. Finally, if Dz is less than (0.25) q+l, it is set equal to

this quantity.

The order corresponding to the maximum step length ratio

r = max(r(q- 1), r(q), r(q+ 1)) and the step length ratio r are

selected to be attempted on the next step if r _> 1.1 after a

successful step; otherwise,both changes are rejected. After

a failed step, q is decreased if r(q-1) > r(q); however, r is

set equal to 1 if it is greater than 1. The following additional

tests are performed on r before the step length h' (equal to

rh,,) to be attempted next is selected:

r min hmax
, Fmax, max r,

The minimum, hmi n, and maximum, hmax, step sizes are,

respectively, set equal to h 0, the user-supplied value for the

step length to be attempted on the first step, and 10(tout -

tout.old). On the first call tou t is set equal to t0. The quantity

rmax is set equal to 10. For the first step length increase

following either a failed convergence test or a failed error test,

it is set equal to two. However, after three or more error test

failures, it is set equal to min (10 4, hn/hmin), thereby ensuring

that the new step length equals hmi n. For the first step length

increase for the problem, rmax is set equal to 10 4 if no con-

vergence or error test failure has occurred.

Changes in method order and step length are attempted only

after S successful steps with the same order and step length,

where S is normally set equal to q + 2. However, if an

unsuccessful step occurs or if Dq > 4 3o(q), the step length

may be changed, and the method order may be reduced.

Following a failed convergence or local error test, S is set equal

to q + 2. After three and more error test failures, S is set equal
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to three. If method order and step size changes are rejected

because r < 1.1, S is set equal to 10. Finally, the successful

step counter is increased by one only if convergence is obtained

in eight or fewer iterations.

If the step size and/or the method order are changed on the

n th step, z, has to be modified. For the cases q' = q - 1 and

q' = q, the modifications are made exactly as in LSODE

(described previously). For the case q' - q + 1, z,, is first

augmented by a column containing the vector lq,(q)

E,/(q + 1), which is approximately equal to hq+lY,! q+l)

/(q+ 1)!, and then all (q + 2) columns are scaled by powers

of h'/h, to account tot any change in the step size.

The solution values at the prescribed output times tout, i,

tout,2 .... are obtained from the Nordsieck history array by

using the Taylor series expansion method (eq. (A33)) described

for.EPISODE and LSODE. The same procedure used in these

two codes to start the integration is used in GCKP84; the step

size, h0, to be attempted on the first step must be supplied by
the user.

CHEMEQ

In this technique, developed by Young and Boris (ref. 10),

the species rate equation (A1) is expressed as a difference

between two positive-definite terms as follows:

dr,
_' = f = (Pi - X)i i = 1 ..... N s (A38)

dt

where, for species i, the production rate (Pi and the destruction

rate 3) i can be derived from equation (3):

NR

j=l

NR

, v.,_R _
_)i p I E (t'_! R_j + 'J"-J' I

..,/j=l

i= 1 ..... N s

(A39)

When the temperature ODE (eq. (9)) is required (method B),

it can be cast in a similar form by combining equations (9)

and (A38)

Xs

- _ - ]_(_ - _)._
dY,_:s+ 1 _dT _ k= 1 k = 1

dt dt Xs

k=l k=l

where

E Y)k_k

(PT-- k=l

N,.

E ykCp,k

k=l

and

N S

E (Pkgk

X)r -- k=l
N_

E ykCp, k

k=l

The objective of this decomposition is to enable factorization

of Yi from 3) i

_)i "= _iYi = Yi/'ri

where £i, the loss coefficient for species i, is obtained simply

by dividing 3) i by Yi (i.e., a2_ = _2)i/Yi). With this new

notation, equation (A38) can be written as

dv
_i = (Pi -- °giYi = (Pi -- Yi/ri (A40)
dt

which, for constant (Pi and £i, can be solved to give

(Pi (Pi

yi( t,,) = yi( t,, j + h,, = £i + yi( t,, I) - _ exp(-£ih,,)

Expressed in this way, it can be seen that 1/£ i ( = 7i) describes

how quickly the variable Yi reaches its equilibrium value.

In advancing the solution from time t,,_ I to time t,,, all of

the equations are separated into two classes, stiff and nonstiff,

according to the criterion

h,, f _> 1 stiff

< 1 nonstiff
Ti,n- 1

where ri, n_ l denotes the value of r i at time t,,_ _. The two

types of equations are integrated by separate predictor-

corrector schemes. For equations classified as nonstiff, the

improved Euler method (with the Euler method as predictor

and the modified Euler method (or trapezoidal rule) as

corrector) is used. For equations classified as stiff, a simple,

stable, asymptotic formula is used.
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Nonstiff predictor:

y l0l = Yi ,- i + h,_,,,_ 1 (A41a)
l,I1

Stiff predictor:

yI01 Yi.... I (2"ri.... 1 - h,) + 2h,, 7i,,,- l(3)i,n-- I (A41b)
_i,n

Nonstiff corrector:

27i,n- I -]- h,,

hu If _l,,,11
yi!_l+ I I = Vi m i+ _ ,n 1 + Ji, n j

(A42a)

Stiff corrector:

+ + ....,-h,,]l/F h,,], LTi,,[m]+ 7i ,n- 1 -Jr"

(A42b)

In equations (A41) and (A42), m + 1 is the current iteration
number. The zeroth estimate is the result of the predictor step.
Also, f[ml [m]..... =f(/Y_,,]). Convergence is ascertained by com-

ylm+ I1with y)/_,lfor all N components using the relativeparing -i.,
error criterion

F r,!r l] ?
max ---- < EPS (A43)O- _

' Lminl l; l, Yi[f_ 1+1]

To avoid numerical difficulties with the use of equation (A43),

each estimate is constrained by a minimum value. In the
present work, a variable that is less than 10-2° is set equal
to 10-2°. Thus, for a species with decaying concentration,

convergence is obtained trivially once Y,. <- 10 -2°, and its

equation is decoupled from the equation set.
If convergence is not achieved after ITMAX iterations, the

step length is halved and the step repeated. In this study, a
value of ITMAX = 5 was used because it minimized the

execution time for both test problems (ref. 2). If the corrector
converges after M iterations (M __.ITMAX), the step is

accepted as successful, and the solution is updated

Yi, = y.l_ i = 1..... N.
, f, II

No attempt is made either to estimate or control the local
truncation error.

After each step n the step size h,;+ 1 to be attempted on the
next step is computed from the converged integration cycle
as follows:

I 1 1h,_+l = h,, + 0.005
(o/EPS) I/2

The step size, h0, to be attempted on the first step is
determined such that none of the variables will change by more

than a prescribed amount. The formula used for h0 is

h0 = EPS I 1 jmin yi(t°), or if yi(to) < 10 -2°
i Lfi(l 0 ) o_i,O

The solution at each output station tout was computed by
linear interpolation between the computed approximations at

tn-1 and t,,, where 6, is the first mesh point that is _>tout:

lout -- In- I

_Y(too0= Y,,-_ + (Y,, - Y,, I)
h,,

CREKID

In CREK1D, attention is paid to the distinguishing physical

and computational characteristics of the induction, heat release,
and equilibration regimes (refs. 11 to 14). This code consists

of two algorithms developed for the two distinctly different
regimes: (a) induction and early heat release, when the ODE's

are dominated by positive time constants and (b) late heat
release and equilibration, when the ODE's are more stable

(ref. 2). Both algorithms are based on an exponentially fitted
trapezoidal rule, but they use different iterative methods for

convergence.
The code CREK1D solves a mixed differential-algebraic

system of equations: ODE's for the species mole numbers

and the algebraic enthalpy conservation equation (8) for the
temperature. The ODE's and algebraic equation are solved

simultaneously; however, in the following discussion the
variables _ and Y refer only to the species mole numbers.

The solution method used for the species ODE's is a gener-

alized, tunable, single-step, implicit procedure:

Yi,,, = Yi.,-I + h,,[U/,,_., + (1 - Ui.,,)f., i] i= 1 ..... NS

(A44)

where Ui,. is a degree-of-implicitness factor. This parameter
is obtained by "exponentially fitting" it to a locally exact

solution of equation (A 1) as follows: The species rate expression
is expressed in a locally linearized form such that

fi =fi,n-1 + Oi,n(Yi - Yi .... 1) i = 1..... Ns (A45)
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where the choice of 0g,,, a suitable linearization constant, is
discussed shortly. Equation (A45) assumes that in the interval
[t,,_ i, t,,] (i.e., locally) each species mole number varies expo-

nentially. Integration of this equation gives

Yg,,,= Yg,,,_j+ h,d_....
exp(h,,Oi,,, ) - 1

hnOi,n
(A46)

To exponentially fit Ui,,, we first replacer,,, in equation (144)
with the expression obtained from equation (A45):

f,,, = f,,, I + Oi,,,( Yi,,, - Yi.,- I) (A47)

and then equate the resulting expression for Yi,,, with equation
(A46). These operations give

1 1
Ui.,,- + i= 1..... N s (A48)

h,,Oi,, 1 - exp (h,,Oi,,,)

In order to maintain absolute A-stability of equation (A48)

(i.e., to keep errors introduced into the numerical solution at

any one step bounded as h,, is increased indefinitely), Ui,,,
must be restricted to the interval (0.5,1.0). For values of

Oi,,,> 0, equation (A48) gives Ui,. < 0.5. CREK1D resolves
this problem by setting Oi,_= 0 whenever it is greater than zero.

This value of Oi,,, gives Ug,, = 0.5, so that equation (A44)
defaults to the second-order-accurate trapezoidal rule. However,

for Oi,, < 0, equations (144) and (A48) together are equivalent
to the locally exact or exponential solution, which has an

equivalent polynomial accuracy of order six to eight (ref. 11).
Thus, equations (A44) and (A48), with the constraint

(0.5 _ Ui,,, < 1), constitute an exponentially fitted trapezoidal
rule, a method which is A-stable and has a polynomial-order

accuracy of at least two and as great as six to eight.
The linearization constants [Oi,,,lare obtained in one of two

ways. In the first, called functional linearization (see refs. 11
to 14), equation (A47) is solved explicitly for Og,, to give

fi,n -- f,lt -- 1

Oi,n - - Zi,,, (A49)

In the second approach, called formal linearization (refs. 11

to 14), the net formation rate of each species is expressed as
a difference between two positive-definite terms, as described
in the previous section (see eqs. (A38) and (_A40)). Comparing

equations (A47) and (A40) gives

Oi.n= -- _i,,r- I (A50)

for this procedure.
At each integration step, equation (A44) must be solved for

11,.,,,.The solution is accomplished by Newton-Raphson (NR)

iteration in regime b and Jacobi-Newton (JN) iteration (ref. 29)

in regime a.

A Newton-Raphson functional Fi, l'_nl (i = 1 ..... Ns) for each

species mole number is defined from equation (A44) by

- ( - V,,) _fti.j
F.[m ] __ Yi,!t7n] Y/,n- 1 1 fg,n- .....

.... h,,u,,, u5 ' (A51)

= F tmlfor i 1.... N s. For temperature the functional T,,, is
defined from the enthalpy conservation equation (8) as

Us
F tinl vim]

T,,, = Elk,,, _k(T, liroll -- Ho(To) (152)
k=l

where m is the iteration number, Zln''q is the mth-approximation

to the exact value T(t,), _k(Tl,ml) is the molar-specific enthalpy
of species k at temperature _ml, and H0(T0) is the initial

mixture mass-specific enthalpy at the initial temperature To.

Newton-Raphson corrector equations with log variable cor-
rections (for self-scaling of the widely varying mole numbers)

are given by

US OFi[_'1 v[,,,+ I] OFi_']'1 T[m+ II _F t,,,]

k=l 01n _ml Aln "k,, +--Aln =k,i, 01n T [ml - n ,,n

(A53)

for i = 1 ..... Ns.

Ns _,[m] _tT[m]

E UtT'n y[,n+ 11 u, T,n _,n+ 11 lT['n]v_m_-'---qAln k.,, + -- Aln
k=l 0In _k,,, 01n T,I"1 = ----T.,,

(A54)

where

Aln E-[m+ll = In y.[m+ll _ In y[ml i = 1, ,N sI,I1 I,II _ l,ll " " "

and

Aln _m+'l = In T,_m+ll -In _m]

The partial derivatives in equation (153) are obtained from
equation (A51) and are as follows (with the step and iteration

numbers suppressed for elarity):

(A55)

0In T OT
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where 6ik , the Kronecker symbol, is

=0 i_k3ik = 1 i = k

and Of/OY k and Of/OT can be derived from equations (3) to

(8), and (10). in evaluating Of/OYk, the partial derivatives

with respect to % are assumed to be negligible compared

with the other terms. The required partial derivatives are then

given by

NR
af

- (ph)-1
aYe. j= 1

(u(} - l,('/)(l,k'iR j -- Pkj R j) (A56)

0f, _ f,
OT T 1NR [R(N j )

prj=

( A1-R_j N_j+_--jj]

where

n/=

N S N S

i=1 i=1

The partial derivatives of F T are obtained by differentiating

equation (A52) and are as follows:

OFT
-- gk_k '

01n Yk

Ns

OFt

Oln T - E Ykcp'kT' (A57)
i=1

where, again, the step and iteration numbers have been

suppressed. The N s + 1 equations (A53) and (A54) are

solved simultaneously by LU decomposition and back-

substitution (ref. 27). The resulting log variable corrections

f vim + T_[m + I]are used to update the current estimates t-i.,, q/ and

by the approximate equations

Yil,:_[+'1= Yi['_I, (1 + Aln y[m+ll),,,, i=1 ..... Ns 1
Ttl[ n+l] = T_ml (1 + Aln T_I''+'1) (158)

The solution procedure does not use a predictor; instead, the

converged results tY/.,,_ iI and T,,_ 1 from the previous step are

used to start the iteration.

The JN iteration technique can be derived from the NR

iteration procedure by neglecting the off-diagonal elements of

the Jacobian matrix for the mixed differential-algebraic system

of equations. With this simplification, equations (A53) to (A55)

reduce to

aF_!;;'l
01n y b,,l

I,I1

--Aln y.[,,,+II_ F H i = 1 ..,Ns (A59)
I, I1 -- -- i, ii , '

K'[ml rl_ m + l i _ _ _" [ml )
-r.,_ Aln

01n T,Iml - -r.,,

D_mJ K['"I oflml
_ i,n i,n ll[ml :/i,n

D y.Iml01n y.[,'_l,.,, h,,U i''' "'_ _ *,,,,

(A60)

The iteration procedure is further simplified by approximating

Of/OYi, (eq. (A56)) as follows:

NR

of

OE .i=

which, when combined with equation (A38), gives

Of ff)i

With these simplifications equation (A59) can be solved

explicitly for the iterative corrections

Flml
Aln vbn+ tl ....

y)ml,,h11. + _O!,,,l
,11 I"ll _ 1,#1 I,##

i= 1 ..... Ns (A61)

The temperature correction is obtained by substituting equation

(A57) into equation (A60):

Flml
T, II

(A62)_ln _,,,+tl =
Ns

E
k=l

where cp,k (_ml) is the constant-pressure molar specific heat

of species k at temperature T,Iml. The current estimates are

updated by using equation (A58).

To start this iteration process, the predicted values for the

species mole numbers are given by equation (A46):

Y)i°_ = Yi .... , "_ hnfi .... 1
exp(h,,Oi.,,) - 1

h#1Oi,n
i = 1..... N s

(A46a)
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The predicted temperature is obtained by a single NR iteration

of the enthalpy conservation equation (8)

T,I,°l = T,,_ I +

Ho(To) -
k=l

N S

k=l

(A63)

For both NR and JN iteration schemes the test for

convergence of the estimates Y!'"I/ is based on the magnitudes
t-t, )

of the log variable corrections, and is given by

Ns \i/2

E CAin y,.,,H)2

6,,, i= 1 ?-- < EPS (A64)

Us

This test is used only with variables whose magnitudes are

greater than 10 20; that is, the summation does not include

species with mole numbers _< 10-2°. At each iteration the

estimated convergence rate, Cm, defined as

Cm _ --

FJm- I

is also computed. If convergence is not obtained after ITMAX

iterations, where ITMAX is the user-supplied maximum number

of corrector iterations to be attempted, or if C m > 0.8, the

step length is decreased. The new step length is calculated as

follows:

h,, _ h,, rain [0.5, max(0.1, 0.5/C,,,)/

and the step is retried with the new step size. At least two

iterations are required to define C,,,; on the first iteration 6,,, i

is set equal to 10. A value of ITMAX - 10 was used for both

problems examined in this study.

If convergence is achieved in M iterations (M _< ITMAX),

the step is accepted as successful, and the solution is updated:

Yi,, = 14,_ i= 1 ..... N s
, t ,it

T,, = 7",,I_

After corrector convergence, the step length, hiter, that

would produce a convergence rate in the range (0.4,0.5) is

estimated as follows:

hitcr= h,,(0.4/C,,,)1/2 C m < 0.4

=h, 0.4 _< C m -< 0.5

=h,,(0.5/C,,,) 1/2 C,,, > 0.5

If convergence occurs on the first iteration, Cm is set equal

to 0.1.

At each step an average weighted local truncation error

estimate, d,,, is computed by using the approximations

(z ),J21 1 Ns f Y/,,,--I_/°) 7 2
d,,= cmaxTY,7;,,Y,,,))

for the JN iteration, and

(., z,{ j "/
1 1 Ns (- y _ 14..i] _ 2\ -

_ i,1_ i,n
d,,

3 max (Yi.,,- l, _.,,)
i=

for the NR iteration. The above summations include only

species whose mole numbers are greater than 10-2°. For both

iteration techniques the step length, haccy, that would exactly

satisfy the user-specified local relative error tolerance, EPS,

is calculated from

haccy = h,, (EPS/d,,) 113

The step length h,',+ I to be attempted on the next step is

taken to be

h,_+l = min(hiter, haccy, 10h,,) (A65)

However, if convergence difficulties forced a reduction in the

step length on the current step, h,;+l is restricted to

h,_+ i _ rain(h,,, h,_+ l) (A66)

to prevent a recurrence of the problem.

CREK1D automatically selects the linearization method and

the iteration scheme to be used for solving equation (A44).

During induction and heat release, when small step lengths

are required for solution accuracy, the JN iteration is used

to minimize computational work. During late heat release and

equilibration, when the ODE's are more stable and larger step

lengths can be used, the NR iteration is preferred since it has

better convergence properties than the JN iteration. The regime

identification test exploits the fact that during equilibration

many reactions achieve a condition in which the forward and

reverse rates are large but with vanishingly small differences

(refs. 13 and 30). The actual test used at the beginning of each

time step is

9

Ill _ lo -3 (m, + _i) (A67)

where (Pi and _}i are given by equation (A39). If any two

species satisfy equation (A67), regime b is obtained, and the

NR iteration is used for the step. If fewer than two species
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satisfy equation (A67), regime a is obtained, and the JN

iteration is used for the step. Once the NR iteration is selected

for any one step, the above test is no longer applied, and the

NR iteration is used for the rest of the problem.

Whenever the reaction rate for any species satisfies equation

(A67), that species is considered to be in "quasi-steady state"

and the "L-formulated" equatiOn (A50) is used. For all other

species the "Z-tbrmulated" equation (A49) is used. To nfinimize

computational work, the IZi,,, 1 are evaluated only once per

step: at the beginning of the time step, using equation (A49).

However, since Y,-,, and f,,, are not known at the start of the

step, the [Zi.,, 1 are approximated using values from the

previous step:

Zi,n _ Zi,n l

_ A,,-_-f_ .... 2

Yi,tl- ] -- Yi,I1-2

CREK1D also includes an algorithm for filtering the initial

conditions that may be ill posed. These ill-posed conditions

may arise, for example, in multidimensional modeling because

of the averaging of mole numbers over adjacent grid nodes.

CREK1D therefore "filters" the initial conditions to provide

physically meaningful initial mole numbers and net species

production rates. For purposes of this filtering CREK1D uses

the decomposition performed in CHEMEQ (eqs. (A38) and

(A40)). On the first call to CREK1D it uses this formulation

over one time step of length hi, given by

1
h I - (A68)

max £i,0
i

The predictor-corrector algorithm uses equation (A46) (with

Oi,l = -_i,0) as the predictor

II/.101= 1I/.0 + hlf.o g-/1 - exp t ,,._i,0)_z 1A "_

1. hl_3i.o )
i= 1 ..... N s

An implicit Euler corrector is then iterated to convergence

= h rim+l]
g[m+ II Yi,0 q-i,l iJi, l

In the above two equations, the subscript 1 indicates that this

is the first step. Using equations (A38), (A40), and (A58),
to[m+ 1] o[m+ 1]

together with the approximations '_i,1 = (Pl_ 1 and _i,J =

_[_1, the preceding corrector equation can be rewritten to

provide the following expression for the log variable

corrections [Aln vtm+Jl_.all 5.

Aln yIm+ II Yi,o- y[mli,, + hlf['[ '1
i,l

y/!'('l + hl_D)_71

Equation (A69) is iterated until converged; that is, the criterion

given by equation (A64) is satisfied. If convergence is not

obtained after 10 iterations or Cm > 0.8, the step length is

halved, and the step retried. If convergence is obtained after

M iterations (M _< 10), the step is accepted as successful, the

solution for the mole numbers is updated

Yi,, = Yi!_ 1 i= 1..... Ns

and the temperature TI is obtained by a single Newton-

Raphson iteration

T, = To+

H0(T0) - E,¢_ ( To)
k=l

Yk lcpk(To)
k=l

The step size, hl, to be attempted on the next step is

determined from the maximum loss coefficient at t I by using

an expression similar to equation (A68). For this step, the JN

iteration (eqs. (A46a) and (A61) to (A63)) is used, with all

Oi, n set equal to zero, so that all Ui. . = 0.5 (see eq. (A48)).

The predictor step (eq. (A46a)), therefore, reduces to the

explicit Euler method, and the corrector (eq. (A44)), to the

trapezoidal rule. For the next and subsequent steps the step

size is adjusted according tO equation (A65) or (A66), and the

iteration procedure and linearization constants are selected as

described previously. If NR iteration is used, the Jacobian

matrix for the mixed differential-algebraic system of equations

is updated at y = I1,,_ _, T = T,,_ 1.

The solution values at the prescribed output times tout.l,

tout.2,.., are obtained by adjusting the step length so that the

internal mesh points coincide with these times. Thus, the step

size h,;+l is given by

h,_+l -- min (h,_+l , tou , - t,,),

where tout is the current value of the output time, and the

results at tout are generated by solving the governing

equations. To continue the integration past each output time,

the procedures described above for the second and subsequent

steps are used.

To reduce the computational cost, the use of exponential

functions is minimized by replacing them with rational function

approximations. For example, the term (e :_- 1)/x in equation

(A46a) is evaluated by means of a (2,2) diagonal Pad6
x

approximation, e(2,2), for exp x:

X X 2

1+-+--
2 12

x

e(2,2 ) -- x < 0

X x 2

i= 1..... N s (A69) 1--+--
2 12
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whichgives

e _ - 1 1
x<0

x 1 - x(l/2 - x/12)

Similarly, the tuning factor Ui.,, (eq. (A48)) is evaluated by

using the approximation

1Ui,,= 1--exp
' 2 \ 12 /

This equation requires six operations to evaluate and does not

exhibit the singularity at x = 0 of the exact expression (eq.

(A48)).

Although log-variable corrections are used in the code,

evaluation of logarithms of the variables is not required. Also,

the use of the approximations given by equations (A58) avoids

the cost of computing the exponentials of the log-variable

corrections to obtain the new estimates.

Another technique used in the code to reduce computational

work is to locally linearize the expressions for the thermo-

dynamic properties of the species and the rate coefficients.

In particular, during the course of iterative convergence of

the equations, the thermodynamic properties and rate

coefficients are not reevaluated while the current temperature

is within a local window (T, T + AT), where/',Tis specified

by the user. Use of this strategy has been shown to reduce

the computational work (refs. 2, 3, and 5).
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Appendix B

Description of Temperature Calculation Method

In this method, the temperature T,, at each discrete time t,, is given by

is computed from the solution for the species mole numbers

returned by the integrator by using the algebraic enthalpy

conservation equation

E Gi'n_i(r¢') = HO

i=1

(8)

Equation (8) is solved for the temperature by using the

Newton-Raphson (NR) iteration technique (e.g., ref. 23). This

equation is rewritten as

Ns

F(T,,) = E ai,"f_i(T") - H° (B1)

i=1

so that solving equation (8) is equivalent to finding the zero

of F. The quantity F( T,I''1) is the amount by which the mixture

mass-specific enthalpy at the m th approximation for T,, T,I''1

(m - 1,2,...), fails to satisfy equation (8). A new approximation,

T,Im+ll, for the temperature is obtained from equation (B1)

by locally linearizing F at T,Iml:

T,I"'+ q = T,_'"I F(TI" "1) _ T,I'"I- F(T_I'"I)

(3F/3 T) r- r];"J Ns

E {Ti'nCpd ( T_ml )

i=1

The test for convergence of the estimates is based on the mag-

nitude of the corrections 6_ ''+ II (equal to T,Im+tl - T,Iml) and

A

,_Tl'"+ I1 I 9
-'_ & ERMAX

rill

where the vertical bars denote absolute value and ERMAX

is the local relative error tolerance. If convergence is not

obtained after MAXITS iterations, where MAXITS is the user-

supplied maximum number of corrcctor iterations to be

attempted, an error exit is taken. If convergence is achieved

in M iterations (M _< MAXITS), the solution T,_MI is accepted

as the temperature at t,,:

The NR iteration will converge if the initial guess (i.e.,

T,_°l), is sufficiently accurate (ref. 23). The present work did

not utilize a predictor to generate Zl,°l; instead, the most recently

computed temperature was used to start the iteration. Now,

the temperature was evaluated at the end of each integration

step and whenever the species derivatives and Jacobian matrix

were computed. Hence, the converged value obtained either

at the end of the previous step or from the previous estimates

for the mole numbers was used as the initial guess for the current

temperature. For the very first temperature computation for

the problem, the initial temperature, To, served as the predicted

value. The above procedure was found to be satisfactory in

that the iteration converged for all integration methods and

EPS values used in this study. In addition, the converged temper-

ature was not significantly different from that obtained by

integrating the temperature differential equation (ref. 2).
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